Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Toxicol Appl Pharmacol ; 486: 116922, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583725

RESUMEN

Inflammatory bowel disease (IBD) is characterized by recurrent inflammatory reactions in the intestinal mucosa, including ulcerative colitis (UC) and Crohn's disease (CD). The expression of Toll-like receptor 2 (TLR2) has been observed to increase during the progression of IBD. Flavokawain B (FKB), a natural chalcone with potent anti-inflammatory activity, exerts its effects through inhibition of the NF-κB pathway. In this study, we aimed to investigate the effects and mechanisms of FKB targeting TLR2 in IBD. C57BL/6 J mice were treated with 2.5% dextran sulfate sodium (DSS) for 7 days, with administration of FKB or TLR2 inhibitor C29 starting on day 2 to establish the model of IBD. In vitro, bone marrow-derived macrophages (BMDMs) were stimulated with the TLR2 agonist Pam3CSK4 to explore the therapeutic effect of FKB and its pharmacological mechanism. Compared with the model group, the FKB-treated group showed significant reductions in colitis-related injuries in the IBD mouse model, including weight gain, increased colon length and reduced inflammation. FKB decreased the formation of TLR2-MyD88 complex by targeting TLR2, leading to suppression of downstream NF-κB signaling pathway. Similar therapeutic effects were observed in the C29-treated group. Additionally, in vitro data suggested that FKB exerted its anti-inflammatory effect by targeting TLR2 and inhibiting Pam3CSK4-induced activation of the NF-κB pathway. The anti-inflammatory effects of FKB were demonstrated through drug affinity responsive target stability assay and cellular thermal shift assay, revealing its binding affinity to TLR2. By inhibiting the activation of the TLR2/NF-κB signaling pathway, FKB effectively prevented DSS-induced IBD and exhibited promising potential as a therapeutic candidate for IBD treatment.


Asunto(s)
Ratones Endogámicos C57BL , FN-kappa B , Transducción de Señal , Receptor Toll-Like 2 , Animales , Receptor Toll-Like 2/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Flavonoides/farmacología , Sulfato de Dextran/toxicidad , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
2.
Int Immunopharmacol ; 129: 111609, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38364742

RESUMEN

Obesity is recognized as a major risk factor for chronic kidney disease (CKD), which is accompanied by increased renal lipid build-up, fibrosis, inflammation, apoptosis and pyroptosis. Bicyclol (BIC), a Chinese marketed hepatoprotective drug, has shown excellent anti-inflammatory, anti-fibrosis, anti-apoptotic, and lipid regulation effects in different animal models. In this study, we explored the role and mechanism of BIC in high-fat diet (HFD)-induced obesity-related nephropathy. Mice were fed with HFD for 24 weeks to develop obesity-related nephropathy, while mice in the BIC administration group were treated with BIC (50 mg/kg or 100 mg/kg, once every two days) at the last 12 weeks. We found that BIC treatment relieved the impairment of kidney structure and renal dysfunction caused by HFD. In addition, we found that BIC mitigated HFD-induced renal fibrosis, inflammation, apoptosis and pyroptosis by inhibiting JNK and NF-κB pathways. SV40-MES-13 cells treated with palmitate (PA) were used as the in vitro model. Our data show that BIC pre-administration relieved cellular damage caused by PA through suppressing JNK and NF-κB signaling pathways. In conclusion, we demonstrated that BIC attenuated obesity-induced renal injury by inhibiting chronic inflammation, fibrosis, apoptosis and pyroptosis via targeting JNK and NF-κB pathways. Our data suggested that BIC could be potentially used to prevent obesity-associated nephropathy, which warrants future investigation.


Asunto(s)
Compuestos de Bifenilo , FN-kappa B , Insuficiencia Renal Crónica , Animales , Ratones , FN-kappa B/metabolismo , Riñón/patología , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Inflamación/metabolismo , Insuficiencia Renal Crónica/patología , Fibrosis , Lípidos , Dieta Alta en Grasa , Ratones Endogámicos C57BL
3.
Crit Rev Biotechnol ; : 1-18, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455421

RESUMEN

Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.

4.
Cell Death Differ ; 30(6): 1457-1471, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932155

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which has been shown to increase the incidence of colorectal cancer. Recent studies have highlighted the role of ubiquitination, a post-translational modification, in the occurrence and development of colonic inflammation. Ovarian tumor deubiquitinase 6 A (OTUD6A) is a deubiquitinating enzyme, which regulates cell proliferation and tumorigenesis. In this study, we investigated the expression and role of OTUD6A in IBD. Wide-type or Otud6a-/- mice were used to develop dextran sodium sulfate (DSS)- or 2,6,4-trinitrobenzene sulfonic acid (TNBS)-induced colitis model, as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer model. Bone marrow-derived macrophages (BMDMs) were isolated from wild-type and Otud6a-/- mice to dissect molecular mechanisms. Our data show that OTUD6A deficiency attenuated DSS or TNBS-induced colitis, as well as AOM/DSS-induced colitis-related colon cancer in vivo. Bone marrow transplantation experiments further revealed that OTUD6A in myeloid cells was responsible for exacerbation of DSS-induced colitis. Mechanistically, OTUD6A directly bound to NACHT domain of NLRP3 inflammasome and selectively cleaved K48-linked polyubiquitin chains from NLRP3 at K430 and K689 to enhance the stability of NLRP3, leading to increased IL-1ß level and inflammation. Taken together, our research identifies a new function of OTUD6A in the pathogenesis of colitis by promoting NLRP3 inflammasome activation, suggesting that OTUD6A could be a potential target for the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Neoplasias Ováricas , Ratones , Animales , Femenino , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Colitis/patología , Enfermedades Inflamatorias del Intestino/patología , Macrófagos/metabolismo , Inflamación/metabolismo , Neoplasias Ováricas/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Ratones Endogámicos C57BL
5.
Cancer Biol Ther ; 24(1): 2162807, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36647192

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive biliary epithelial tumor with limited therapeutic options and poor prognosis. Curcumin is a promising active natural compound with several anti-cancer properties, though its clinical uses remain hindered due to its poor bioavailability. We recently synthesized curcumin analogs with multifunctional pharmacological and bioactivities with enhanced bioavailability. Among these novel curcumin analogs, WZ26 is a representative molecule. However, the anti-tumor effect of WZ26 against CCA is unclear. In this study, we evaluated the anti-tumor effect of WZ26 in both CCA cells and CCA xenograft mouse model. The underlying molecular anti-cancer mechanism of WZ26 was also studied. Our results show that WZ26 significantly inhibited cell growth and induced mitochondrial apoptosis in CCA cell lines, leading to significant inhibition of tumor growth in xenograft tumor mouse model. Treatment of WZ26 increased reactive oxygen species (ROS) generation, subsequently decreased mitochondrial membrane potential and inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing G2/M cell cycle arrest and cell apoptosis. Pretreatment of N-acetyl cysteine (NAC), an antioxidant agent, could fully reverse the WZ26-induced ROS-mediated changes in CCA cells. Our findings provide experimental evidence that curcumin analog WZ26 could be a potential candidate against CCA via enhancing ROS induction and inhibition of STAT3 activation.


Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Curcumina , Humanos , Animales , Ratones , Curcumina/farmacología , Curcumina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Muerte Celular , Apoptosis , Colangiocarcinoma/tratamiento farmacológico , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología
6.
Curr Eye Res ; 48(5): 474-484, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36591949

RESUMEN

PURPOSE: To explore the pathological mechanism of Toll-like receptor 4 (TLR4) mediating neovascular age-related macular degeneration (nAMD) and the potential role of the TLR4 coreceptor myeloid differentiation protein 2 (MD2). METHODS: In the study, we inhibited MD2 with the chalcone derivative L2H17 and we utilized a laser-induced choroidal neovascularization (CNV) mouse model and Tert-butyl hydroperoxide (TBHP)-challenged rhesus choroid-retinal endothelial (RF/6A) cells to assess the effect of MD2 blockade on CNV. RESULTS: Inhibiting MD2 with L2H17 reduced angiogenesis in CNV mice, and significantly protected against retinal dysfunction. In retina and choroid/retinal pigment epithelium (RPE) tissues, L2H17 reduced phospho-ERK, phospho-P65 but not phospho-P38, phospho-JNK, and reduced the transcriptional levels of IL-6, TNF-α, ICAM-1 but not VCAM-1. L2H17 could protect RF/6A against TBHP-induced inflammation, oxidative stress, and apoptosis, via inhibiting the TLR4/MD2 signaling pathway and the following downstream mitogen-activated protein kinase (MAPK) and nuclear transcription factor-κB (NF-κB) activation. CONCLUSIONS: Inhibiting MD2 with L2H17 significantly reduced CNV, suppressed inflammation, and oxidative stress by antagonizing TLR4/MD2 pathway in an MD2-dependent manner. MD2 may be a potential therapeutic target and L2H17 may offer an alternative treatment strategy for nAMD.


Asunto(s)
Neovascularización Coroidal , Receptor Toll-Like 4 , Animales , Ratones , Neovascularización Coroidal/metabolismo , Inflamación , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-36662448

RESUMEN

PURPOSE: Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes. Inflammation and oxidative stress play important roles in DCM development. Bicyclol is a hepatoprotective drug in China that exerts anti-inflammatory effects by inhibiting the MAPK and NF-κB pathways to prevent obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on DCM. METHODS: A type 1 diabetes mouse model was established using C57BL/6 mice by intraperitoneal injection of STZ. The therapeutic effect of bicyclol was evaluated in both heart tissues of diabetic mice and high concentration of glucose (HG)-stimulated H9c2 cells. RESULTS: We showed that bicyclol significantly attenuated diabetes-induced cardiac hypertrophy and fibrosis, which is accompanied by the preservation of cardiac function in mice. In addition, bicyclol exhibited anti-inflammatory and anti-oxidative effects both in vitro and in vivo. Furthermore, bicyclol inhibited the hyperglycemia-induced activation of MAPKs and NF-κB pathways, while upregulating the Nrf-2/HO-1 pathway to exhibit protective effects. CONCLUSION: Our data indicate that bicyclol could be a promising cardioprotective agent in the treatment of DCM.

8.
Inflammopharmacology ; 30(6): 2167-2179, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36261684

RESUMEN

BACKGROUND: The pathogenesis of inflammatory bowel disease (IBD) remains unclear. C66, a derivative of curcumin, reportedly exerts anti-inflammatory, antifibrotic and anti-apoptotic effects by targeting the JNK pathway. However, the effect of C66 against IBD is not clear. In this study, we aimed to investigate the effect of C66 against IBD. METHODS: C57BL/6J mice were treated with 2.5% DSS for 7 days, and then administered water for 3 days to develop the IBD mouse model. A mouse intestinal epithelial cell line, MODE-K, stimulated by lipopolysaccharide (LPS) was used as the in vitro model. The therapeutic effects of C66 were evaluated and the pharmacological mechanisms were explored. RESULTS: Compared to the model group, C66 treatment significantly reduced colitis-associated damage, including a decrease in disease activity index (DAI), a higher body weight and longer colon. In addition, the infiltration of distal inflammatory cells, loss of crypt tissues, and destruction of epithelial cells were reduced in C66-treated group. In addition, C66 treatment reduced fibrotic areas and inflammatory responses in the colon tissues, leading to increased epithelial cell proliferation and decreased apoptosis in colon. Furthermore, C66 treatment decreased the levels of p-JNK and p-P65, indicating that C66 inhibits the activation of the JNK and NF-κB signaling pathways induced by DSS in colon tissues. Finally, in vitro data show that C66 inhibited LPS-induced inflammation and apoptosis in small intestinal epithelial cells.  CONCLUSIONS: The curcumin analog C66 exhibits its anti-inflammatory effect by inhibiting the DSS-induced activation of JNK/NF-κB signaling pathways. C66 may be a potential candidate for the treatment of IBD.


Asunto(s)
Colitis , Curcumina , FN-kappa B , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Curcumina/análogos & derivados , Curcumina/uso terapéutico , Sulfato de Dextran , Lipopolisacáridos , Ratones Endogámicos C57BL , FN-kappa B/metabolismo
9.
Biologia (Bratisl) ; 77(12): 3565-3580, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35971510

RESUMEN

Chinese herbal slices (CHSs) are closely associated to microorganisms, whether they are endophytic or epiphytic in plants, or introduced during processing. In this study, the structures and predicted functions of microbial communities in 150 batches of samples from five types of CHSs were investigated by combining pure culture and 16 S rDNA amplicon sequencing. Bile-salt-tolerant gram-negative bacteria were detected in 56.0% of samples, and Salmonella was detected in two batches of Glycyrrhiza slices and in one batch of Rheum slices. The main genera from the Enterobacteriaceae, Bacillaceae, Fibrobacteraceae, and Pseudomonadaceae families were assessed in typical colonies. Amplicon sequencing identified 1200 bacterial genera, including some pharmacopeial-controlled bacteria and many beneficial endophytes of medicinal plants. Around 65% of the genera co-occurred in all five CHSs. In clustering based on different algorithms, the samples from each CHS type were relatively clustered, with some overlap. Ranked from highest to lowest diversity, the CHSs were Rheum, Angelica, Astragalus, Codonopsis, and Glycyrrhiza. Each CHS had its indicator species. Functional annotations suggest that potential microbial transformation uses CHSs as substrates and microbial communities as transformants. Overall, it was demonstrated that, based on their complementary advantages, high-throughput sequencing technology and traditional pure-culture technology together can fully assess the microbial load of CHSs and reduce the misdetection rate. We observed large microbial communities in typical CHSs, demonstrating differences and similarities among different CHS types. These results provide a reference for establishing new microbial limit criteria for CHSs and highlight the importance of further correlating CHS microbial community structure and function. Supplementary Information: The online version contains supplementary material available at 10.1007/s11756-022-01199-0.

10.
Acta Pharmacol Sin ; 43(7): 1758-1768, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34737421

RESUMEN

Acute lung injury (ALI) is a sudden onset systemic inflammatory response. ALI causes severe morbidity and death and currently no effective pharmacological therapies exist. Natural products represent an excellent resource for discovering new drugs. Screening anti-inflammatory compounds from the natural product bank may offer viable candidates for molecular-based therapies for ALI. In this study, 165 natural compounds were screened for anti-inflammatory activity in lipopolysaccharide (LPS)-challenged macrophages. Among the screened compounds, flavokawain B (FKB) significantly reduced LPS-induced pro-inflammatory IL-6 secretion in macrophages. FKB also reduced the formation of LPS/TLR4/MD2 complex by competitively binding to MD2, suppressing downstream MAPK and NF-κB signaling activation. Finally, FKB treatment of mice reduced LPS-induced lung injury, systemic and local inflammatory cytokine production, and macrophage infiltration in lungs. These protective activities manifested as increased survival in the ALI model, and reduced mortality upon bacterial infection. In summary, we demonstrate that the natural product FKB protects against LPS-induced lung injury and sepsis by interacting with MD2 and inhibiting inflammatory responses. FKB may potentially serve as a therapeutic option for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Productos Biológicos , Antígeno 96 de los Linfocitos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Flavonoides , Lipopolisacáridos , Pulmón/metabolismo , Ratones , FN-kappa B/metabolismo
11.
IEEE J Biomed Health Inform ; 25(4): 1139-1150, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32750957

RESUMEN

Recent advances in the development of multivariate analysis methods have led to the application of multivariate pattern analysis (MVPA) to investigate the interactions between brain regions using graph theory (functional connectivity, FC) and decode visual categories from functional magnetic resonance imaging (fMRI) data from a continuous multicategory paradigm. To estimate stable FC patterns from fMRI data, previous studies required long periods in the order of several minutes, in comparison to the human brain that categories visual stimuli within hundreds of milliseconds. Constructing short-time dynamic FC patterns in the order of milliseconds and decoding visual categories is a relatively novel concept. In this study, we developed a multivariate decoding algorithm based on FC patterns and applied it to magnetoencephalography (MEG) data. MEG data were recorded from participants presented with image stimuli in four categories (faces, scenes, animals and tools). MEG data from 17 participants demonstrate that short-time dynamic FC patterns yield brain activity patterns that can be used to decode visual categories with high accuracy. Our results show that FC patterns change over the time window, and FC patterns extracted in the time window of 0∼200 ms after the stimulus onset were most stable. Further, the categorizing accuracy peaked (the mean binary accuracy is above 78.6% at individual level) in the FC patterns estimated within the 0∼200 ms interval. These findings elucidate the underlying connectivity information during visual category processing on a relatively smaller time scale and demonstrate that the contribution of FC patterns to categorization fluctuates over time.


Asunto(s)
Mapeo Encefálico , Magnetoencefalografía , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Análisis Multivariante
12.
Artículo en Inglés | MEDLINE | ID: mdl-32382304

RESUMEN

This study aims to explore the possible homologous mechanism of 7 frequently-used herbs for heat-clearing and detoxification in traditional Chinese medicine (HDTCM) for treating Alzheimer's disease (AD), one of the most common types of dementia, based on network pharmacology. Herbs that satisfied the criteria of containing chlorogenic acid, relating to AD and aligning with HDTCM, were simultaneously collected to determine whether they have anti-AD effect based on a survey of the literature. Herb-ingredient-target-disease networks were constructed by collecting information from the TCMSP and GeneCards public databases. The common targets of the herbs and AD were identified for conducting a Gene Ontology (GO) analyses and a Reactome pathway enrichment analysis. The results showed that PTGS1, IL-6, CASP3, and VEGFA were the predicted key gene targets. The IL-4 and IL-13 signaling pathway, the ESR-mediated signaling pathway, and the extranuclear estrogen signaling pathway were the significant pathways associated with the 7 herbs. This study revealed that the analogous anti-AD mechanism of the 7 herbs of HDTCM may be associated with anti-inflammation, which is a common effect of the chlorogenic acid and quercetin components.

13.
Bioelectromagnetics ; 41(1): 52-62, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31802523

RESUMEN

We established three types of thrombosis models to explore the effects of the static magnetic field (SMF) on thrombosis in rats and mice with three different MF intensities. In the carrageenan-induced thrombosis model in rats, the SMF treatments reduced the black tail length of rats, extracorporeal thrombus, and the mass of wet and dry thrombus, and improved the coagulation index value. In FeCl3 -induced arterial thrombosis model in rats, the SMF treatment showed some anti-thrombotic effects. More specifically, the SMF treatment affected rodent blood pressure, plasma plasminogen activator inhibitor, tissue-type plasminogen activator, thrombus mass, and thrombus protein content. In the adrenaline-induced thrombosis model in mice, the SMF treatment had certain effects on the diameter and blood flow velocity of mouse auricle microcirculation in fine veins and arteries. Overall, the highest MF intensities we tested, 20-150 mT, showed a trend of anti-thrombotic effect, indicating that the moderate-intensity SMF might serve as a potential treatment for clot-related diseases in the future. Bioelectromagnetics. 2020;41:52-62 © 2019 Bioelectromagnetics Society.


Asunto(s)
Campos Magnéticos/efectos adversos , Trombosis/prevención & control , Animales , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Carragenina/metabolismo , Epinefrina/metabolismo , Frecuencia Cardíaca , Compuestos de Hierro/metabolismo , Masculino , Ratones , Microcirculación , Activadores Plasminogénicos/metabolismo , Ratas , Ratas Sprague-Dawley , Activador de Tejido Plasminógeno/metabolismo
14.
J Ethnopharmacol ; 251: 112488, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-31866509

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Andrographis paniculata (AP) is a native plant with anti-inflammatory and antioxidant properties and used as an official herbal medicine. Recently more and more researches have indicated that AP shows pharmacological effects on Alzheimer's disease (AD) but its mechanism is unclear. AIMS OF THE STUDY: Network pharmacology approach combined with experimental validation was developed to reveal the underlying molecular mechanisms of AP in treating AD. MATERIALS AND METHODS: The compounds of AP from TCM database, the AD-related targets from disease database and the targets corresponding to compounds from swissTargetPrediction were collected. Then DAVID database was used for annotation and enrichment pathways, meanwhile the compound-target, protein-protein interaction from String database and compound-target-pathway network was constructed, molecular modeling was performed using Sybyl-x. Okadaic acid (OKA)-induced cytotoxicity model in PC12 cells was established to verify the mechanism of AP and the key proteins were detected by western blotting. RESULTS: 28 AP components were identified after ADME filter analysis and 52 targets were gained via mapping predicted targets into AD-related proteins. In addition, after multiple network analysis, the 22 hub target genes were enriched onto pathways involved in AD, such as neuroactive ligand-receptor interaction, serotonergic synapse, Alzheimer's disease, PI3K-Akt and NF-kB signaling pathway. Interestingly, molecular docking simulation revealed that the targets including PTGS2, BACE1, GSK3B and IKBKB had good ability to combine with AP components. Experimental validation in an in vitro system proved that AP treatment obviously increased in levels inactive of p-GSK3ß (P < 0.05) and decreased in levels of BACE (P < 0.05), PTGS2 (namely COX2, P < 0.05) and NF-kB protein (P < 0.05) compare with OKA treated group. CONCLUSION: Our data provided convincing evidence that the neuroprotective effects of AP might be partially related to their regulation of the APP-BACE1-GSK3B signal axis and inflammation, which should be the focus of study in this field in the future.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Andrographis , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Simulación del Acoplamiento Molecular , Ácido Ocadaico/toxicidad , Células PC12 , Fitoquímicos/farmacología , Mapas de Interacción de Proteínas , Ratas
15.
Toxicol Res (Camb) ; 8(3): 353-360, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31160969

RESUMEN

Qingkailing injection (QKLI) is a kind of multi-component traditional Chinese medicine injection. It has been widely used in clinical practice, but in recent years, it has caused more and more adverse reactions, mainly manifested as pseudo-allergic symptoms. To explore the potential mechanism of the pseudo-allergic reaction by QKLI, basophilic leukemia cell line 2H3 (RBL-2H3) was chosen. The results showed that QKLI at doses of 5, 10 and 20 mL L-1 activated phosphoinositide 3-kinase (PI3K) activity and also increased the levels of Ras-related C3 botulinum toxin substrate 1 (Rac1), p21 protein-activated kinase 1 (Pak1), LIM kinase (Limk1) and cofilin (an actin polymerization regulator) proteins. What's more, QKLI aggravated the depolymerization of F-actin. NSC23766, a Rac1 inhibitor, reversed the previous results in QKLI-treated RBL-2H3 cells. In addition, when the Rac1 gene was knocked down using lentiviral vector-loaded shRNA in RBL-2H3 cells, the PI3K activity and depolymerization of F-actin were downregulated, hinting that the pseudo-allergic reaction was significantly reduced. In general, the pseudo-allergic reaction induced by QKLI was likely to be based on PI3K-Rac1 signaling pathways partially.

16.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235892

RESUMEN

Recent studies mentioned that Andrographolide (Andro), the main bioactive component of traditional Chinese medicine Andrographis paniculata, may be a potential natural product for treating Alzheimer's disease, but the underlining mechanism remains to be discovered. In this study, we investigated whether Andro regulates the nuclear factor E2-related factor 2 (Nrf2)/Sequestosome 1 (p62) signaling pathway and activates autophagy to protect neuronal PC12 cells from the toxicity of the ß-amyloid (Aß) peptide. Our results revealed that Andro protected and rescued PC12 cells from Aß1⁻42-induced cell death and restored abnormal changes in nuclear morphology, lactate dehydrogenase, malondialdehyde, intracellular reactive oxygen species, and mitochondrial membrane potential. RT-PCR and Western blotting analysis demonstrated that Andro activated autophagy-related genes and proteins (Beclin-1 and LC3); meanwhile, it also augmented the Nrf2 and p62 expression in mRNA and protein levels, and reduced p-tau and p21 protein expression in Aß1⁻42-stimulated cells. Then, further study showed that the pre-transfection of cells with Nrf2 small interfering RNA (siRNA) resulted in the downregulation of p62, Beclin-1, and LC3 proteins expression, as well as the upregulation of p21. Furthermore, the pre-transfection of cells with p62 siRNA didn't block the Nrf2 protein expression, accompanying with an elevated p21. Taken together, these results showed that Andro significantly ameliorated cell death due to Aß1⁻42 insult through the activation of autophagy and the Nrf2-mediated p62 signaling pathway.


Asunto(s)
Antioxidantes/farmacología , Diterpenos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Péptidos beta-Amiloides/toxicidad , Animales , Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Fragmentos de Péptidos/toxicidad , Ratas
17.
Basic Clin Pharmacol Toxicol ; 119(6): 611-620, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27289016

RESUMEN

Nasopharyngeal carcinoma (NPC) is a refractory tumour, and chemotherapy is one of the primary treatment modalities. Oncoprotein 18 (Op18)/stathmin is a conserved small cytosolic phosphoprotein and highly expressed in tumours, which plays a vital role in maintaining the malignant phenotype of tumours. Taxol is a clinically widely used chemotherapeutic agent for a broad range of taxol-resistant tumours. This study showed that Op18/stathmin silencing by RNA interference (RNAi) combined taxol cooperatively improved cellular apoptosis in CNE1 cells mainly via initiating endogenous death receptor pathway, impaired the capabilities of cellular proliferation and cellular migration and down-regulated the half maximal inhibitory concentration (IC50 ) of taxol, meanwhile decreased the expression of the upstream extracellular regulated kinase 1 (ERK1) in vitro. Evidence also showed that taxol cytotoxicity was markedly augmented for Op18/stathmin RNAi in other NPC cells. In vivo animal experiments have demonstrated that early combination of Op18/stathmin silencing and taxol evidently inhibited tumourigenicity of CNE1 cells and growth of xenografted tumours in nude mice. Remarkably, silencing Op18/stathmin by RNAi still promoted transformation of late-stage CNE1 cells in NPC-xenografted tumours from moderately to highly differentiated and inhibited the pleiotropic cytokine interleukin-10 (IL-10) autocrine by transplanted tumours. These findings suggest that silencing Op18/stathmin by RNAi promotes chemosensitization of NPC to taxol and reverses malignant phenotypes of NPC, which provides a new clue for treating drug-resistant tumours.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma/terapia , Resistencia a Antineoplásicos , Neoplasias Nasofaríngeas/terapia , Paclitaxel/uso terapéutico , Tratamiento con ARN de Interferencia , Estatmina/antagonistas & inhibidores , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Desnudos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Clasificación del Tumor , Paclitaxel/farmacología , Interferencia de ARN , Distribución Aleatoria , Estatmina/genética , Estatmina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Surg Res ; 135(1): 100-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16566941

RESUMEN

BACKGROUND: Neovascularization occurs through two mechanisms: angiogenesis and vasculogenesis. Therefore, there are two strategies to promote neovascularization: therapeutic angiogenesis and therapeutic vasculogenesis (endothelial progenitor cells therapy). MATERIALS AND METHODS: In this study, we examined whether or not endothelial progenitor cells combined with vascular endothelial growth factor (VEGF) gene therapy is useful for ischemia surgical flaps in vivo. At the same time, we quantitatively compared the neovascularization ability of transplanted endothelial progenitor cells (EPCs) transducted with VEGF165 gene and EPCs alone. EPCs were isolated from cord blood of healthy human volunteers, cultured in vitro for 7 days and identified by immunofluorescence. After transduced with VEGF165 gene in vitro, proliferative activity of EPCs was assessed using MTT assay. CM-DiI was used to trace EPCs in vivo 4 days after injection of 5 x 10(5) VEGF-transduced EPCs(VEGF-transduced EPCs group, n = 10), 5 x 10(5) EPCs (non-transduced EPCs group, n = 10) in 500 microL EBM-2 media, or 500 microL EBM-2 media (EBM-2 media group, n = 10) local, a cranially based flap was elevated on the back of nude mice. The percent flap survival, neovasculariztion and blood flow recovery of flaps was detected. RESULTS: EPCs expressed cell markers CD34, KDR, and CD133. A statistically significant increase in percent flap survival was observed in mice of VEGF-transduced EPCs group as compared with that of non-transduced EPCs group: 67.99 +/- 6.64% versus 59.43 +/- 4.69% (P < 0.01), and 41.24 +/- 2.44% in EBM-2 media group (P < 0.01). The capillary density and blood flow recovery of flaps in VEGF-transduced EPCs group were both improved. CM-DiI-labeled VEGF-transduced EPCs were observed in vivo and the numbers of cells increased. CONCLUSION: EPCs from human cord blood can increased neovascularization of ischemic flaps and augmented the survival areas, and VEGF-transduced EPCs have more powerful ability of promoting neovascularization in animal model of ischemic flaps.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Terapia Genética/métodos , Isquemia/terapia , Neovascularización Fisiológica , Colgajos Quirúrgicos/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/genética , Animales , División Celular , Células Endoteliales/citología , Sangre Fetal/citología , Supervivencia de Injerto/fisiología , Humanos , Isquemia/fisiopatología , Ratones , Ratones Desnudos , Células Madre/citología , Células Madre/fisiología , Colgajos Quirúrgicos/fisiología , Transducción Genética , Transgenes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA