Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
1.
Am J Transl Res ; 16(7): 3046-3054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114710

RESUMEN

OBJECTIVE: To analyze the effects of Huoxue Qufeng Decoction combined with Tongguan Liquefying Acupoint Penetration therapy on swallowing function and quality of life in patients with ischemic stroke. METHODS: A total of 145 patients with post-stroke dysphagia admitted to Dingxi People's Hospital from January 2019 to May 2022 were selected with 65 patients in the control group and 80 patients in the observation group. The control group received Huoxue Qufeng Decoction alone, while the observation group received additional Tongguan Liquefying Acupoint Penetration therapy. Clinical efficacy, NIH Stroke Scale (NIHSS) score, Water Swallow Test, Swallowing Function Assessment (SSA) score, MD Anderson Dysphagia Inventory (MDADI) score, overall incidence of adverse events, and Swallowing Quality of Life (SWAL-QOL) score were compared between the two groups. RESULTS: The total response rate in the observation group was higher than that in the control group, with a statistically significant difference (P<0.01). After treatment, the SSA score and NIHSS score were statistically lower in the observation group than in the control group (P<0.01). The MDADI and SWAL-QOL scores were higher in the observation group than in the control group, with a statistically significant difference (both P<0.01). The total effective rate reflected by the Water Swallow Test was significantly higher in the observation group than in the control group (P<0.05). There was no significant difference in the incidence of adverse events between the two groups (P>0.05). Univariate analysis revealed that age and treatment plan were factors influencing the recovery of swallowing function. Logistic multivariate regression analysis further identified age and treatment plan as independent risk factors affecting patient prognosis (P<0.05). CONCLUSION: Huoxue Qufeng Decoction combined with Tongguan Liquefying Acupoint Penetration has a significant effect on post-stroke dysphagia, effectively improving swallowing function and enhancing quality of life.

2.
PeerJ ; 12: e17837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099653

RESUMEN

Hexavalent chromium (Cr(VI)) is a hazardous metallic compound commonly used in industrial processes. The liver, responsible for metabolism and detoxification, is the main target organ of Cr(VI). Toxicity experiments were performed to investigate the impacts of low-dose exposure to Cr(VI) on rat livers. It was revealed that exposure of 0.05 mg/kg potassium dichromate (K2Cr2O7) and 0.25 mg/kg K2Cr2O7 notably increased malondialdehyde (MDA) levels and the expressions of P-AMPK, P-ULK, PINK1, P-Parkin, and LC3II/LC3I, and significantly reduced SOD activity and P-mTOR and P62 expression levels in liver. Electron microscopy showed that CR(VI) exposure significantly increased mitophagy and the destruction of mitochondrial structure. This study simulates the respiratory exposure mode of CR(VI) workers through intratracheal instillation of CR(VI) in rats. It confirms that autophagy in hepatocytes is induced by low concentrations of CR(VI) and suggest that the liver damage caused by CR(VI) may be associated with the AMPK-related PINK/Parkin signaling pathway.


Asunto(s)
Cromo , Hígado , Mitofagia , Proteínas Quinasas , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Cromo/toxicidad , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas , Masculino , Dicromato de Potasio/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Malondialdehído/metabolismo
3.
Materials (Basel) ; 17(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124409

RESUMEN

In order to address the issues of excessive brittle intermetallic compounds (IMC) formation in the TC4 brazed joints, two types of novel Ti-Zr-Cu-Ni-Sn amorphous braze fillers were designed. The microstructure and shear strength of the TC4/Ti-Zr-Ni-Cu-Sn/TC4 brazed joints were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and electronic universal materials testing machine. The results show that the optimized Ti35Zr25Ni15Cu20Sn5 braze filler whose chemical composition is closer to the eutectic point possesses a lower melting point compared with the equiatomic Ti23.75Zr23.75Ni23.75Cu23.75Sn5. This was beneficial to the sufficient diffusion of Cu and Ni elements with the base metal during brazing and reduces the residual (Ti,Zr)2(Ni,Cu) content in the joint, which helps to improve the joint performance. The room-temperature and high-temperature shear strength of the TC4 brazed joints using the near eutectic component Ti35Zr25Ni15Cu20Sn5 filler reached a maximum of 472 MPa and 389 MPa at 970 °C/10 min, which was 66% and 48% higher than that of the TC4 joints brazed with the equiatomic Ti23.75Zr23.75Ni23.75Cu23.75Sn5 braze filler. Microstructural evolution and the corresponding mechanical response were in-depth discussed.

4.
Inflammation ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145786

RESUMEN

UVB radiation induces inflammatory and oxidative stress responses, contributing to skin damage, yet the underlying mechanisms are not fully understood. N-Myc downstream-regulated gene 2 (NDRG2), an emerging stress-associated gene, remains unexplored in UVB-induced skin injury. In this study, we detected skin NDRG2 expression after UVB irradiation for the first time and further used Ndrg2 knockout mice to clarify the role of NDRG2 in UVB-induced skin injury. Three-month-old male Ndrg2+/+ and Ndrg2-/- mice (16-18g) were exposed to UVB to induce acute skin damage, and then dorsal skin samples were collected for subsequent analyses. UVB-induced skin damage was scored. Western Blot Analysis, immunofluorescence (IF) double labeling, and immunohistochemistry (IHC) were employed to assess NDRG2 expression and/or distribution. The concentrations of TNF-α, IL-6, IL-1ß, MPO, MMP8, superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining were employed to determine pathological changes. RNA sequencing and analysis were performed to estimate transcript expression levels and analyze mRNA expression. DESeq2 software was employed to identify differentially expressed genes (DEGs). DEGs were visualized using volcanic and heat maps. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to identify primary biological functions, metabolic pathways, or signal transduction pathways associated with DEGs. UVB-challenged Ndrg2-/- mice exhibited significantly exacerbated skin damage (erythema, edema, and erosion), neutrophil infiltration, and apoptosis compared to Ndrg2+/+ mice. Furthermore, UVB-challenged Ndrg2-/- mice displayed significantly elevated pro-inflammatory cytokines, myeloperoxidase (MPO), matrix metalloproteinase-8 (MMP8), and reduced antioxidant expression. RNA sequencing identified 1091 significantly differentially expressed genes enriched in inflammation, immune response, and oxidative stress pathways. In conclusion, the deficiency of Ndrg2 markedly exacerbated UVB-induced skin damage by promoting inflammatory responses and inhibiting antioxidant responses. This suggests that stabilizing NDRG2 expression holds promise as a therapeutic strategy for protecting against UVB-induced skin damage.

5.
Talanta ; 280: 126685, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137661

RESUMEN

Protein amyloid fibrillation is linked to a wide range of neurodegenerative diseases. Protein oligomer is an intermediate substance in the process of fibrillation, which is neurotoxic and formed by the aggregation of protein molecules under physiological stress. Early detection of protein oligomers could make timely intervention of protein fibrillation related diseases. Therefore, it is crucial to develop efficient inhibitors and probes for monitoring amyloid fibril formation. In this study, we developed a novel amyloid inhibitor quinoline yellow (QY), which was proved to be effective in inhibiting insulin protein fibrillation as demonstrated by fluorescence, morphology characterization and circular dichroism. When QY binds to insulin, it exerts inhibitory effects on the nucleation process and effectively impedes the formation of fibrillar fibrils. In addition, we present the application of surface-enhanced Raman spectroscopy (SERS) as an extremely sensitive technique for identifying amyloid oligomers. The investigation employed the probe QY, which demonstrated a linear reaction for identifying oligomers in the concentration range of 1.0-58.0 µM. Impressively, it showcased an exceptionally sensitive detection threshold of 0.2 µM. And also illustrating the binding sites and interaction mechanisms between small molecules of QY and insulin by SERS. The aforementioned methodology was also employed for the identification of insulin oligomers in human serum samples. Thereby, the proposed approach presenting a promising avenue with extensive implications in the realms of pharmaceutical exploration and disease diagnosis.

6.
Front Oncol ; 14: 1419710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114303

RESUMEN

Large Cell Neuroendocrine Carcinoma (LCNEC) of the cervix is an extremely rare but highly aggressive type of cervical cancer and it requires multimodal therapy to improve their quality of life. At present, there are no established, standardized treatment protocols for managing large cell neuroendocrine carcinoma of the cervix. In this report, we present a case of a patient with cervical LCNEC, Who was a 39-year-old woman who presented with irregular vaginal bleeding accompanied by lower abdominal distension for over a month. Examination revealed a cauliflower-like cervical mass approximately 4cm in diameter, with the normal cervical architecture distorted and partially fused to the vaginal wall. Following further investigations, the stage assigned was IVB, and who was started on neoadjuvant chemotherapy with the TC (paclitaxel + carboplatin) regimen but during neoadjuvant chemotherapy, The patient developed a vaginal urinary leakage. Then, The patient underwent a comprehensive treatment regimen that included pelvic exenteration, urinary system reconstruction, pelvic floor reconstruction, and chemotherapy. Given the patient's positive immunohistochemistry for EGFR, the treatment was combined with the anti-angiogenic drug, bevacizumab. The patient achieved complete remission following the comprehensive treatment. Through this case to explore individualized treatment for cervical LCNEC.

7.
Sci Total Environ ; 947: 174568, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977093

RESUMEN

The relationship between co-exposure to multiple metals and gestational diabetes mellitus (GDM) and the mechanisms involved are poorly understood. In this nested case-control study, 228 GDM cases and 456 matched controls were recruited, and biological samples were collected at 12-14 gestational weeks. The urinary concentrations of 10 metals and 8-hydroxydeoxyguanosine (8-OHdG) as well as the serum levels of malondialdehyde (MDA) and advanced glycation end products (AGEs) were determined to assess the association of metals with GDM risk and the mediating effects of oxidative stress. Urinary Ti concentration was significantly and positively associated with the risk of GDM (odds ratio [OR]:1.45, 95 % confidence interval [CI]: 1.12, 1.88), while Mn and Fe were negatively associated with GDM risk (OR: 0.67, 95 % CI: 0.50, 0.91 or OR: 0.61, 95 % CI: 0.47, 0.80, respectively). A significant negative association was observed between Mo and GDM risk, specifically in overweight and obese pregnant women. Bayesian kernel machine regression showed a significant negative joint effect of the mixture of 10 metals on GDM risk. The adjusted restricted cubic spline showed a protective role of Mn and Fe in GDM risk (P < 0.05). A significant negative association was observed between essential metals and GDM risk in quantile g-computation analysis (P < 0.05). Mediation analyses showed a mediating effect of MDA on the association between Ti and GDM risk, with a proportion of 8.7 % (P < 0.05), and significant direct and total effects on Ti, Mn, and Fe. This study identified Ti as a potential risk factor and Mn, Fe, and Mo as potential protective factors against GDM, as well as the mediating effect of lipid oxidation.


Asunto(s)
Diabetes Gestacional , Humanos , Diabetes Gestacional/epidemiología , Femenino , Embarazo , Estudios Prospectivos , Adulto , Estudios de Casos y Controles , Metales/orina , Metales/sangre , Factores de Riesgo , Estrés Oxidativo , Exposición Materna/estadística & datos numéricos
8.
J Nanobiotechnology ; 22(1): 425, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030543

RESUMEN

Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors ß-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/ß-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.


Asunto(s)
Proliferación Celular , Exosomas , Fibroblastos , Folículo Piloso , Ratones Desnudos , Regeneración , Vibrisas , Vía de Señalización Wnt , Cicatrización de Heridas , beta Catenina , Animales , Ratones , Fibroblastos/metabolismo , Exosomas/metabolismo , Vibrisas/fisiología , beta Catenina/metabolismo , Dermis/metabolismo , Movimiento Celular , Factor de Unión 1 al Potenciador Linfoide/metabolismo
9.
Materials (Basel) ; 17(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063724

RESUMEN

Composite plates comprising a blend of rare earth neodymium-(Nd) doped M-type barium ferrite (BaM) with CNTs (carbon nanotubes) and polyethylene WERE synthesized through a self-propagating reaction and hot-pressing treatment. The plates' microscopic characteristics were analyzed utilizing X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), thermo-gravimetric analysis (TGA), Raman, and scanning electron microscopy (SEM) analytical techniques. Their microwave absorption performance within the frequency range of 8.2 to 18 GHz was assessed using a vector network analyzer. It showed that CNTs formed a conductive network on the surface of the Nd-BaM absorber, significantly enhancing absorption performance and widening the absorption bandwidth. Furthermore, dielectric polarization relaxation was investigated using the Debye theory, analyzing the Cole-Cole semicircle. It was observed that the sample exhibiting the best absorbing performance displayed the most semicircles, indicating that the dielectric polarization relaxation phenomenon can increase the dielectric relaxation loss of the sample. These findings provide valuable data support for the lightweight preparation of BaM-based absorbing materials.

10.
Theranostics ; 14(10): 3945-3962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994035

RESUMEN

Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1ß and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.


Asunto(s)
Inflamasomas , Liposomas , Proteína con Dominio Pirina 3 de la Familia NLR , Nanopartículas , Osteoblastos , Osteoporosis Posmenopáusica , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Femenino , Humanos , Ratas , Inflamasomas/metabolismo , Nanopartículas/química , Osteoporosis Posmenopáusica/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ratas Sprague-Dawley , ARN Interferente Pequeño/administración & dosificación , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/administración & dosificación , Modelos Animales de Enfermedad , Persona de Mediana Edad , Ovariectomía
11.
Front Neurol ; 15: 1330975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978808

RESUMEN

Introduction: Corpus callosum injury is a rare type of injury that occurs after a stroke and can cause lower limb dysfunction and a decrease in activities of daily living ability. Furthermore, there are no studies that focus on the progress in rehabilitation of the lower limb dysfunction caused by infarction in the corpus callosum and the effective treatment plans for this condition. We aimed to present a report of two patients with lower limb dysfunction caused by corpus callosum infarction after a stroke and a walking training method. Methods: We implemented a walking training method that prioritizes bilateral symmetry and increases lateral swaying before the patients established sitting/standing balance. The plan is a rapid and effective method for improving walking dysfunction caused by corpus callosum infarction. Case characteristics: Following sudden corpus callosum infarction, both patients experienced a significant reduction in lower limb motor function scores and exhibited evident gait disorders. Scale evaluations confirmed that walking training based on symmetrical and increased lateral sway for patients with lower limb motor dysfunction after corpus callosum infarction led to significant symptom improvement. Conclusion: We report two cases of sudden motor dysfunction in patients with corpus callosum infarction. Symmetrical and increased lateral sway-based walking training resulted in substantial symptom improvement, as confirmed by scale assessments.

12.
Transpl Immunol ; : 102078, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964515

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells. METHODS: To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays. RESULTS: HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation. CONCLUSION: Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.

13.
Gene ; 927: 148730, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38944165

RESUMEN

Hypertrophic scar (HS) presents a significant clinical challenge, frequently arising as a fibrotic sequela of burn injuries and trauma. Characterized by the aberrant activation and proliferation of myofibroblasts, HS lacks a targeted therapeutic approach to effectively reduce this dysregulation. This study offers novel evidence of upregulated expression of CD248 in HS tissues compared to normal skin (NS) tissues. Specifically, the expression of CD248 was predominantly localized to α-SMA+-myofibroblasts in the dermis. To explain the functional role of CD248 in dermal myofibroblast activity, we employed a targeted anti-CD248 antibody, IgG78. Both CD248 intervention and IgG78 treatment effectively suppressed the proliferative, migratory, and ECM-synthesizing activities of myofibroblasts isolated from HS dermis. In addition, IgG78 administration significantly attenuated HS formation in an in vivo rabbit ear model. The LC/MS analysis coupled with co-immunoprecipitation of HS tissues indicated a direct interaction between CD248 and the ECM components Fibronectin (FN) and Collagen I (COL I). These findings collectively suggest that CD248 may function as a pro-fibrotic factor in HS development through its interaction with ECM constituents. The utilization of an anti-CD248 antibody, such as IgG78, represents a promising novel therapeutic strategy for the treatment of HS.


Asunto(s)
Antígenos CD , Cicatriz Hipertrófica , Matriz Extracelular , Fibronectinas , Miofibroblastos , Animales , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Conejos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Humanos , Matriz Extracelular/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Fibronectinas/metabolismo , Proliferación Celular , Masculino , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Femenino , Movimiento Celular , Adulto , Células Cultivadas , Actinas/metabolismo
14.
Ecol Evol ; 14(6): e11559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863720

RESUMEN

Understanding how age and body size vary across elevations can provide insights into the evolution of life-history traits in animals. In the present study, we compared the demographic (using skeletochronology) and morphological traits of the Tibetan toad (Bufo tibetanus) between two populations from different elevational habitats (2650 vs. 3930 m). We found that (1) the mean age and body size of females were significantly greater than those of males in both populations; (2) both sexes of toads from the higher elevation tended to be significantly older in age and larger in body size; (3) there was a significant positive relationship between age and body size within each sex of the toad at both elevations; and (4) growth rates varied between the two populations, with the higher rate observed in the lower-elevation population. Our results suggested that factors other than age, such as elevation-associated temperature, influence the observed differences in body size between the two populations. Future research at a broader range of elevations should focus on these factors and evaluate their influence on animal growth patterns.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38884920

RESUMEN

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

16.
Immunol Invest ; : 1-12, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900045

RESUMEN

BACKGROUND: Interstitial lung disease (ILD) is a common pulmonary manifestation of rheumatoid arthritis (RA) and is associated with a poor prognosis. However, the role of blood biomarkers in RA-associated interstitial lung disease (RA-ILD) is ill-defined. We aim to evaluate the role of YKL-40 and Krebs von den Lungen-6 (KL-6) in the diagnosis and severity evaluation of RA-ILD. METHODS: 45 RA-non-ILD patients and 38 RA-ILD patients were included. The clinical data and the levels of YKL-40 and KL-6 were measured and collected for all patients. The risk factors for RA-ILD were analyzed and their correlation with relevant indicators and predictive value for RA-ILD was explored. RESULTS: The levels of YKL-40 and KL-6 in RA-ILD patients were higher than RA-non-ILD patients (p < .001). Both YKL-40 and KL-6 were correlated with the incidence of RA-ILD. The predictive power of combined KL-6 and YKL-40 for the presence of ILD was 0.789, with a sensitivity and specificity at 73.7% and 73.3%, respectively. In RA-ILD patients, both YKL-40 and KL-6 were positively correlated with the Scleroderma Lung Study (SLS) I score and negatively correlated with pulmonary function. CONCLUSIONS: KL-6 and YKL-40 might be a useful biomarker in the diagnosis and severity evaluation of RA-ILD.

17.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38903092

RESUMEN

Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.

18.
Int J Gen Med ; 17: 2289-2297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799199

RESUMEN

Introduction: This study aimed to explore the correlation of systemic immune-inflammation index (SII) and prognostic nutritional index (PNI) with the recurrence and prognosis in patients with advanced oral squamous cell carcinoma (OSCC). Methods: A total of 298 OSCC patients with the stage of III/IV were finally included in the study. SII = neutrophil count (109/L) × platelet count (109/L)/lymphocyte count (109/L). PNI = serum albumin (g/L) + 5 × total lymphocyte count (109/L). Results: High preoperative SII and low preoperative PNI were independent risk factors for tumor recurrence in OSCC patients of the stage of III/IV. The area under the curves (AUC) for SII was 0.69 (0.63 to 0.76), for PNI was 0.72 (0.67 to 0.78), and for joint model was 0.81 (0.76 to 0.85). Patients with low level of joint model had significantly higher overall survival rate for 5 years follow-up than those with high level. Discussion: Both preoperative SII and PNI are valuable independent tumor recurrence prediction index in patients with advanced OSCC. Meanwhile, the combination of preoperative SII and PNI is also valuable on OSCC recurrence and prognosis prediction.

19.
Front Pharmacol ; 15: 1372449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783945

RESUMEN

Ischemia/reperfusion (IR) can induce deleterious responses such as apoptosis, inflammation, and oxidative stress; however, there are currently no efficient therapeutics to treat IR brain injury. Dragon's blood (DB) plays a significant role in treating ischemic stroke in China. Borneol (B) is an upper ushering drug that guides drugs to the target organs, including the brain. Therefore, we hypothesized that the combination of DB and B (DB + B) would provide cooperative therapeutic benefits for IR brain injury. To confirm this, we first investigated the protective effect of DB + B in an IR brain injury rat model using the modified neurological severity score (mNSS), infarction size measure, HE staining, and laser speckle contrast imaging. Then, we comprehensively evaluated the mechanism of DB + B in ameliorating IR brain injury based on RNA sequencing, serum untargeted metabolomics, and 16S rRNA sequencing. We have confirmed that DB + B enhanced the efficacy of the ischemic stroke treatment compared to DB or B alone for the first time. Our study provisionally confirms that the mechanism by which DB + B prevents IR brain injury is related to the maintenance of intestinal microecological balance and regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. DB + B may effectively regulate intestinal flora including o_Pseudomonadales, s_Bacteroides_caecimuris, o_unidentified_Bacilli, f-Pseudomonadaceae, and g-Pseudomonas, mainly regulate serum metabolites including improve the protective benefit of IR brain injury lysoPCs and lysoPEs, thus inhibiting TLR4/MyD88/NF-κB and IL-17 signing pathway to reduce inflammatory reactions. hat this mechanism is associated with the maintenance of intestinal flora balance and the regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. This provides scientific support for the clinical translation of DB + B in the prevention and treatment of ischemic stroke and establishes a basis for further investigation of its therapeutic mechanism.

20.
Sci Rep ; 14(1): 11990, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796503

RESUMEN

The present study explored the risk factors associated with radiotherapy in seniors diagnosed with limited-stage small cell lung cancer (LS-SCLC) to construct and validate a prognostic nomogram. The study retrospectively included 137 elderly patients with LS-SCLC who previously received radiotherapy. Univariate and multivariate COX analyses were conducted to identify independent risk factors and determine optimal cut-off values. Kaplan-Meier survival curves and nomograms were constructed to predict survival. Calibration and receiver operating characteristic (ROC) curves were used to evaluate the accuracy and consistency of the nomogram. Illness rating scale-geriatric (CIRS-G) score, treatment strategy, lymphocyte-to-monocyte ratio (LMR), white blood cell-to-monocyte ratio (WMR), and prognostic nutritional index (PNI) were discovered to be independent prognostic factors. Based on the findings of our multivariate analysis, a risk nomogram was developed to assess patient prognosis. Internal bootstrap resampling was utilized to validate the model, and while the accuracy of the AUC curve at 1 year was modest at 0.657 (95% CI 0.458-0.856), good results were achieved in predicting 3- and 5 year survival with AUCs of 0.757 (95% CI 0.670-0.843) and 0.768 (95% CI 0.643-0.893), respectively. Calibration curves for 1-, 3-, and 5 year overall survival probabilities demonstrated good cocsistency between expected and actual outcomes. Patients with concurrent chemoradiotherapy, CIRS-G score > 5 points and low PNI, WMR and LMR correlated with poor prognosis. The nomogram model developed based on these factors demonstrated good predictive performance and provides a simple, accessible, and practical tool for clinicians to guide clinical decision-making and study design.


Asunto(s)
Neoplasias Pulmonares , Nomogramas , Carcinoma Pulmonar de Células Pequeñas , Humanos , Masculino , Femenino , Anciano , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Pronóstico , Estudios Retrospectivos , Anciano de 80 o más Años , Factores de Riesgo , Curva ROC , Estadificación de Neoplasias , Estimación de Kaplan-Meier , Evaluación Nutricional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA