Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 663: 735-748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432172

RESUMEN

The shuttle effect of soluble lithium polysulfides (LiPSs) is primarily responsible for the unstable performance of lithium-sulfur (Li-S) batteries, which has severely impeded their continued development. In order to solve this problem, a special strategy is proposed. Specifically, ultra-thin NiCo based layered double hydroxides (named LDH or NiCo-LDH) nanosheets are implanted into a pre-designed 3D interconnected carbon networks (SPC) to obtain porous composite materials (named SPC-LDH).During the operation of the battery, the 3D interconnected porous carbon mesh was the first to rapidly adsorb LiPSs, and then the LDH on the surface of the carbon mesh was used to realize the catalytic conversion of LiPSs. This facilitates the electrochemical conversion reaction between S substances while addressing the "shuttle effect". As a result, the battery maintains a discharge capacity of 1401.9, 1114.3, 975.5, 880.7, 760.4 and 679.6 mAh g-1 at the current densities of 0.1, 0.2, 0.5, 1, 2 and 3C, respectively. After 200 cycles at 2C, the battery's capacity stays at 732.9 mAh g-1, meaning that the average rate of capacity decay is only 0.007 % per cycle. Moreover, in-situ XRD demonstrates the critical function of PP/SPC-LDH separators in inhibiting LiPSs and encouraging Li2S transformation. The strong affinity of SPC-LDH for Li2S6 is also confirmed by density functional theory (DFT) calculation, offering more theoretical support for the synergistic adsorption process. This work offers a compelling method to develop modified separator materials that can counteract the "shuttle effect" in Li-S batteries.

2.
Membranes (Basel) ; 12(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36295683

RESUMEN

As a special engineering plastic, polyphenylene sulfide (PPS) can also be used to prepare membranes for membrane separation processes, adsorption, and catalytic and battery separators because of its unique properties, such as corrosion resistance, and chemical and thermal stability. Nowadays, many researchers have developed various types of PPS membranes, such as the PPS flat membrane, PPS microfiber membrane and PPS hollow fiber membrane, and have even achieved special functional modifications. In this review, the synthesis and modification of PPS resin, the formation of PPS membrane and the research progress of functional modification methods are systematically introduced, and the future perspective of PPS membrane is discussed.

3.
Membranes (Basel) ; 12(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295776

RESUMEN

The oil/water separation in harsh environments has always been a challenging topic all over the world. In this study, the ZIF-8/PPS fiber membranes were fabricated via the combination of hot pressing and in situ growth. The distribution of ZIF-8 in the membranes was adjusted by changing the ZIF-8 in situ growth time, which could control the oil/water separation effect. Due to the hydrophilic nature of the ZIF-8/PPS fiber membranes, the water molecules in the oil-in-water emulsion could quickly penetrate into the fiber membrane under the drive of pressure, gravity, and capillary force, forming a water layer on the surface of the fiber membranes. The coupling of the water layer and the fiber structure prevented direct contact between the oil molecules and the fiber membrane, thereby realizing the separation of the emulsion. The results show that when the ZIF-8 in situ growth time was 10 h, the contact angle, the porosity, and the pure water flux of the ZIF-8/PPS fiber membranes were 72.5°, 52.3%, and 12,351 L/h·m2, respectively. More importantly, the separation efficiency of M10 was 97%, and the oil/water separation efficiency reached 95% after 14 cycles. This study provides a novel strategy for preparing MOFs/fiber materials for oil/water separation in harsh environments.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36306440

RESUMEN

Polyphenylene sulfide (PPS) fiber products have been widely used for separation and filtration in harsh environments due to their excellent chemical resistance and relatively economical price. However, the poor temperature and weak oxidation resistance of PPS significantly shorten its service life under high temperature and strong oxidation environments. Herein, we report a type of oxidation-modified PPS (OPPS) fibers with excellent high temperature and oxidation resistance. This is achieved by oxidizing the thioether sulfide groups in PPS molecular chains into sulfoxide and sulfone groups and cross-linking the intermolecular chains. Both experiments and density functional theory (DFT) calculations indicate that hypochlorous acid (HClO) molecules can rapidly oxidize the PPS fiber surface. In addition, molecular dynamics (MD) simulations prove that there are strong hydrogen bonds and van der Waals interactions between HClO molecules and OPPS molecular chains, which promote the penetration of HClO molecules into the interior of the fiber to complete the layer-by-layer oxidation. The prepared OPPS-20 fibers exhibit excellent structural stability under high temperature and strong oxidant environments. Impressively, the OPPS-20 nonwoven filter still exhibits a high dust filtration efficiency of 99.95% after aging at 320 °C for 12 h, and the corresponding pressure drop is 24 Pa. In addition, the OPPS-20 nonwoven filter also maintains excellent filtration performance after aging in 60% HNO3 solution for 12 h, and the filtration efficiency and pressure drop are 99.96% and 29 Pa, respectively. This work demonstrates that the novel OPPS fibers have excellent application prospects in the field of separation and filtration in harsh environments.

5.
Materials (Basel) ; 15(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35744229

RESUMEN

The construction of highly ordered hierarchical nanoarrays is crucial for obtaining effective transition metal carbon nanomaterial electrocatalysts for oxygen evolution reaction (OER) in water splitting. Herein, we adopted a Co metal zeolitic imidazolate framework (Co-ZIF) as a precursor by ion-exchange/etching reaction with Fe(NO3)3 to obtain hierarchical N-doped Co-Fe layered double hydroxide (CoFe-LDH) in situ generated in Co-ZIF nanoarrays based on a self-supported carbon cloth (CC) substrate noted as CoFe-LDH@Co-ZIF@CC. Benefiting from the synergistic effect of these species and their highly ordered self-supported nanoarray structure, the catalytic active sites were fully exposed and highly protected in alkaline electrolyte, which significantly promoted electron transport and improved electrochemical performance. The CoFe-LDH@Co-ZIF@CC exhibited the low overpotentials of about 225 and 319 mV at 10 and 100 mA cm-2 with a small Tafel slope of 81.8 mV dec-1 recorded in a 1.0 M KOH electrolyte. In addition, it also showed a long-term durability without obvious decay after 30 h. Therefore, its remarkable OER activity demonstrates this material's promising application in the green hydrogen energy industry.

6.
ACS Appl Mater Interfaces ; 14(22): 25427-25438, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35621374

RESUMEN

Rechargeable Zn-air batteries have received extensive attention due to their use of nontoxic materials, safety, and high energy density. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode of Zn-air batteries both suffer from slow kinetics, limiting their commercialization development. Herein, we prepared Co, N, and S co-doped hollow carbon nanoboxes (Co-N/S-CNBs) rich in topological defects using polyphenylene sulfide (PPS) as a sulfur-rich carbon source. Critically, by utilizing the self-propagating high-temperature synthesis (SHS), PPS can avoid melting, while simultaneously enabling the catalyst to take on a unique hollow structure. Additional post-treatment to introduce Co and N atoms as active centers further increases the defect sites and microporous structures of the catalyst. Under alkaline electrolytes, the Co-N/S-CNBs enabled Zn-air batteries to exhibit excellent bifunctional catalytic activity for both ORR and OER, surpassing commercial catalysts. Chemical analysis showed that the cracking loss of small molecules from PPS during pyrolysis is the main reason for the formation of topological defects, where the defect sites act as active centers to enhance the catalytic performance. Overall, this work provides new insights into the mechanism of how defects are formed in such a catalyst, as well as shows how a high-performance bifunctional electrocatalyst can be utilized for practical Zn-air batteries.

7.
Sci Rep ; 7(1): 4443, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28667258

RESUMEN

Electrical conductive poly(phenylene sulfide) (PPS)/fullerene (C60) composites were prepared by 1-chlornaphthalene blending method, and the interface effects of C60 and PPS on PPS/C60 properties were characterized. C60 is an excellent nanofiller for PPS, and 2 wt% PPS/C60 composite displayed the optimal conductivity which achieved 1.67 × 10-2 S/cm. However, when C60 concentration reached 2 wt%, the breaking strength and tensile modulus of PPS/C60 fiber achieved maximum 290 MPa and 605 MPa, and those values were 7.72 and 11.2 times as that of pure PPS. The excellent conductive and mechanical properties of PPS/C60 were attributed to the heterogeneous nucleation of C60 during PPS crystallization, formation of a large number of covalent bond by main C60-thiol adducts and minor C60-ArCl alkylation between C60 outer surface and PPS matrix. At same time, PPS/C60 thermal properties were also investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA