Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2400559, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39222358

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging pathogen that can cause severe diarrhoea and high mortality in suckling piglets. Moreover, evidence of PDCoV infection in humans has raised concerns regarding potential public health risks. To identify potential therapeutic targets for PDCoV, we performed a genome-wide CRISPR/Cas9 library screening to find key host factors important to PDCoV infection. Several host genes in this screen were enriched, including ANPEP, which encodes the PDCoV receptor aminopeptidase N (APN). Furthermore, we discovered C16orf62, also known as the VPS35 endosomal protein sorting factor like (VPS35L), as an important host factor required for PDCoV infection. C16orf62 is an important component of the multiprotein retriever complex involved in protein recycling in the endosomal compartment and its gene knockout led to a remarkable decrease in the binding and internalization of PDCoV into host cells. While we did not find evidence for direct interaction between C16orf62 and the viral s (spike) protein, C16orf62 gene knockout was shown to downregulate APN expression at the cell surface. This study marks the first instance of a genome-wide CRISPR/Cas9-based screen tailored for PDCoV, revealing C16orf62 as a host factor required for PDCoV replication. These insights may provide promising avenues for the development of antiviral drugs against PDCoV infection.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Animales , Porcinos , Enfermedades de los Porcinos/virología , Deltacoronavirus/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Humanos , Antígenos CD13/metabolismo , Antígenos CD13/genética , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno , Internalización del Virus
2.
Phytomedicine ; 134: 156015, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39244942

RESUMEN

BACKGROUND: Pseudorabies virus (PRV), a member of the family Herpesviridae, is responsible for significant economic losses in the pig industry and has recently been associated with human viral encephalitis, leading to severe neurological symptoms post-recovery. Despite the widespread impact of PRV, there are currently no approved effective drugs for treating PRV-related diseases in humans or pigs. Therefore, the exploration and discovery of safe and effective drugs for the prevention and treatment of PRV infection is of paramount importance. PURPOSE: The objective of this study is to screen and identify natural compounds with antiviral activity against PRV. METHODS: First, we used a strain of PRV with green fluorescent protein (PRV-GFP) to screen a natural product chemical library to identify potential antiviral drugs. Next, we assessed the antiviral abilities of salvianolic acid A (SAA) in vitro using virus titer assay, qPCR, and IFA. We investigated the mechanisms of SAA's antiviral activity through viral attachment, internalization, inactivation, and nuclease digestion assay. Finally, we evaluated the efficacy of SAA in inactivating PRV using mice as the experimental subjects. RESULTS: This study screened 206 natural compounds for anti-PRV activity in vitro, resulting in the identification of seven potential antiviral agents. Notably, SAA emerged as a promising candidate with significant anti-PRV activity. The mechanism of action may be that SAA can directly inactivate the virus by disrupting viral envelope. In vivo experiments have shown that pre-incubation of SAA and PRV can effectively inhibit the infectivity and pathogenicity of PRV in mice. CONCLUSION: This study offers valuable insights into the antiviral properties of SAA, potentially informing strategies for controlling PRV epidemics and treating related diseases in both humans and animals.


Asunto(s)
Antivirales , Herpesvirus Suido 1 , Seudorrabia , Herpesvirus Suido 1/efectos de los fármacos , Animales , Antivirales/farmacología , Seudorrabia/tratamiento farmacológico , Seudorrabia/virología , Ratones , Ácidos Cafeicos/farmacología , Lactatos/farmacología , Internalización del Virus/efectos de los fármacos , Virión/efectos de los fármacos , Porcinos , Acoplamiento Viral/efectos de los fármacos , Línea Celular , Femenino
3.
J Hazard Mater ; 479: 135680, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39213774

RESUMEN

The potential of microplastics (MPs) to act as carriers for contaminants or engineered nanomaterials is of rising concern. However, directly determining the vector effect of polystyrene (PS) MPs towards nano-hydroxyapatite (nHAP) particles, a typical nano phosphorus fertilizer and soil remediation material, has been rarely studied. In this study, the interaction of differentially surface functionalized PS MPs with nHAP were investigated through batch experiments under different solution chemistry conditions. The results demonstrated that nHAP had the highest attachment/adsorption affinity onto carboxyl-functionalized PS, followed by bare PS and amino-functionalized PS under near-neutral pH conditions. Adsorption of nHAP exhibited a strong pH-dependent behavior with PS MPs, increasing under acidic-neutral pH (3-7) and decreasing at higher pH values. The presence of humic acid and NaCl hindered the adsorption of nHAP onto MPs. Scanning electron microscopy observations revealed a rod-like morphology for adsorbed nHAP, which was randomly distributed on MPs surface. Surface complexation and cation-π interaction were mainly responsible for the adsorption of nHAP as revealed by multiple spectroscopic analyses. These results provide mechanistic insights into nHAP-PS interactions and expound the effect of surface functionalization of PS on binding mechanisms, and thus bring important clues for better understanding the vector effects of MPs towards nanoparticles.

4.
Viruses ; 16(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39205158

RESUMEN

Mpox (formerly known as monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), a DNA virus belonging to the Orthopoxvirus genus, in the Poxviridae family. The disease constitutes a moderate risk to public health at the global level. The MPXV A29L protein plays a crucial role in coordinating virion assembly and facilitating important virus-host interactions. This study focused on the expression, purification, and recombinant protein synthesis of the A29L protein of MPXV using prokaryotic systems. Using hybridoma technology, we successfully generated the monoclonal antibodies (mAbs) 1E12 and 4B2, which specifically recognize the A29L protein. These mAbs were found to be suitable for use in indirect immunofluorescence assays (IFA), Western blotting, and immunoprecipitation (IP). Our investigation also revealed that mAbs 1E12 and 4B2 could detect the A27L protein, a homologous protein found in the vaccinia virus Western Reserve (VACV WR) strain, using IFA, Western blotting, and immunoprecipitation (IP). Using mAbs 1E12 and 4B2 as primary immunological probes, A27L protein expression was detected as early as 6 h postinfection with VACV WR, with increasing protein levels being observed throughout the infection. This study enhances our understanding of the protein structure and function of MPXV and contributes to the development of specific MPXV detection methods.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Monkeypox virus , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/aislamiento & purificación , Animales , Ratones , Anticuerpos Antivirales/inmunología , Monkeypox virus/inmunología , Monkeypox virus/genética , Ratones Endogámicos BALB C , Proteínas Virales/inmunología , Proteínas Virales/genética , Humanos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Femenino , Virus Vaccinia/inmunología , Virus Vaccinia/genética , Hibridomas
5.
Microbiol Spectr ; 12(9): e0071424, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39109857

RESUMEN

The emergence and spread of the African swine fever virus (ASFV) posed a significant threat to the global swine breeding industry, calling for innovative approaches benefiting viral containment and control. A recent study (Z. Zheng, L. Xu, H. Dou, Y. Zhou, X., et al., Microbiol Spectr 12: e02164-23, 2024, https://doi.org/10.1128/spectrum.02164-23) established a multiplexed CRISPR-Cas system targeting the genome of ASFV and tested the consequent antiviral activity both in vitro and in vivo. Application of this system showed a significant reduction of viral replication in vitro, while the germline-edited pigs expressing this system exhibited normal growth with continuous guide RNA expression. Although no survival advantage was observed upon ASFV challenge compared with nonengineered pigs, this marks the first attempt of germline editing to pursue ASFV resistance and paves the way for future disease-resistant animal breeding approaches utilizing CRISPR-Cas technology.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Sistemas CRISPR-Cas , Edición Génica , Animales , Virus de la Fiebre Porcina Africana/genética , Porcinos , Fiebre Porcina Africana/virología , Edición Génica/métodos , Replicación Viral/genética , Genoma Viral/genética , Resistencia a la Enfermedad/genética
6.
Front Psychiatry ; 15: 1414575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050913

RESUMEN

Objective: Parent-child relationship is critical for children's well-being. In China, the large number of left-behind children (LBC, one or both parents leaving for work for at least 6 months) raises public concern. Although LBC often report poor mental health status and higher alienation towards parents, the dynamic trend of subjective well-being in this population, as well as the prediction of alienation towards parents on LBC's subjective well-being, remain unrevealed. This study aimed to examine the dynamic trend of subjective well-being in Chinese LBC and further explore the predictional influence of alienation towards parents, with resilience as a potential mediator. Methods: We recruited 916 rural LBC in China and investigated them at five waves (baseline, and 1, 3, 6, and 12 months later) using Inventory of Alienation towards Parents (IAP), Resilience Scale for Chinese Adolescents (RSCA) and Subjective Happiness Scale (SHS). We used hierarchical linear modeling (HLM) for analysis. Results: At baseline, no significant differences were found in the scores of alienation towards parents, resilience, and subjective well-being on gender, grade, or type of LBC. A significant correlation existed between the scores of alienation towards parents, resilience, and subjective well-being. HLM showed a linear increase in the subjective well-being of rural LBC. Alienation toward both mother and father negatively predicted the developmental trajectory of children's subjective well-being over 12 months. Moreover, resilience partially mediated this prediction. Conclusion: This study is among the first to reveal that alienation towards parents predicts the developmental trajectory of later LBC's subjective well-being, with resilience as a mediator. These findings warrant the necessity of paying attention to alienation toward parents to ensure the mental health of LBC, giving valuable guidance to parents, schools and governments.

7.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 1981-1996, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044570

RESUMEN

Proteins serve as the primary executors of cellular activities in organisms, and thus investigating the subcellular localization and interactions of proteins is crucial for understanding protein functions and elucidating the molecular mechanisms in organisms. Proximity labeling is a recently developed effective method for detecting protein-protein interactions in live cells. Compared with the conventional methods for studying protein-protein interactions, proximity labeling demonstrates high sensitivity, strong specificity, and low background and is widely employed in the research of protein-protein interactions between pathogens and hosts. This article reviews the recent progress in the development and applications of the biotin ligase BirA and its mutants and elucidates the functioning principles of several classical biotin ligases. This review aims to clarify the role of proximity labeling based on BirA and its mutants in identifying protein-protein interactions between pathogens and hosts.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Interacciones Huésped-Patógeno , Mutación , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biotina/metabolismo , Humanos , Mapeo de Interacción de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo
8.
J Biol Chem ; 300(7): 107453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852886

RESUMEN

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , G-Cuádruplex , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Chlorocebus aethiops , Células Vero , Antivirales/farmacología , Antivirales/química , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Porfirinas/química , Porfirinas/farmacología , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Ácidos Picolínicos/metabolismo , Replicación Viral/efectos de los fármacos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Aminoquinolinas
10.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735951

RESUMEN

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Virus de la Diarrea Epidémica Porcina , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Animales , Porcinos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Nanotubos de Carbono/química , Límite de Detección , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Anticuerpos Monoclonales/inmunología , Transistores Electrónicos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Anticuerpos Antivirales/inmunología , Diseño de Equipo
11.
Vet Res ; 55(1): 42, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575961

RESUMEN

African Swine Fever virus (ASFV), the causative agent of African swine fever, is a highly lethal hemorrhagic virus affecting domestic pigs and wild boars. The primary target cells for ASFV infection are porcine alveolar macrophages (PAMs), which are difficult to obtain and maintain in vitro, and less subjective to genetic editing. To overcome these issues and facilitate ASFV research, we obtained a subclonal cell line PK1-C5 by subcloning LLC-PK1 cells that support stable ASFV proliferation. This consequential cell line exhibited high ASFV infection levels and similar viral growth characteristics to PAMs, while also allowing high-efficiency genomic editing through transfection or lentivirus transduction of Cas9. Taken together, our study provided a valuable tool for research aspects including ASFV-host interactions, pathogenicity, and vaccine development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Sus scrofa , Línea Celular , Riñón
12.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663699

RESUMEN

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Apoptosis , Células Endoteliales , Proteínas Hemolisinas , Streptococcus suis , Streptococcus suis/patogenicidad , Streptococcus suis/metabolismo , Humanos , Animales , Apoptosis/efectos de los fármacos , Ratones , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/microbiología , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Virulencia , Encéfalo/metabolismo
13.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661066

RESUMEN

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Asunto(s)
Antivirales , Antígenos CD13 , Ionóforos , Ganado , Animales , Antivirales/farmacología , Antivirales/química , Ionóforos/farmacología , Ionóforos/química , Antígenos CD13/metabolismo , Antígenos CD13/química , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Drogas Veterinarias/farmacología , Drogas Veterinarias/química , Coronavirus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Policétidos Poliéteres
14.
ACS Appl Mater Interfaces ; 16(13): 16399-16407, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527861

RESUMEN

Composition screening and structure optimization are two critical factors in improving the electrocatalytic performance of hybrid materials. Herein, we present a straightforward hydrothermal hydrolyzation-topological transformation strategy for the synthesis of a range of Ni-Co bimetallic compounds with a hollow nanoflower structure. Among these Ni-Co compounds, Ni2P/Co2P hollow nanoflowers (HNFs) exhibit the most impressive electrocatalytic activity for the hydrogen evolution reaction (HER), necessitating only an 153 mV overpotential to achieve a current density of 10 mA cm-2 under alkaline conditions. Importantly, this performance remains stable for over 48 h, indicating exceptional durability. The exceptional catalytic performance of Ni2P/Co2P HNFs arises from the synergy between the hybrid Ni2P/Co2P components and the hollow nanoflower structure. The former provides abundant catalytic sites, while electron rearrangement at the heterointerfaces enhances the adsorption/desorption of active species and facilitates electron transfer. The latter contributes to the exposure of catalytic sites, shortening mass and charge transfer routes, and bolstering structural stability during prolonged electrocatalysis. This research offers valuable insights into the screening and optimization of advanced hybrid electrocatalysts, holding significant promise for applications in the emerging field of new energy technologies.

15.
J Med Virol ; 96(3): e29512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483056

RESUMEN

Coronaviruses (CoVs) have continuously posed a threat to human and animal health. However, existing antiviral drugs are still insufficient in overcoming the challenges caused by multiple strains of CoVs. And methods for developing multi-target drugs are limited in terms of exploring drug targets with similar functions or structures. In this study, four rounds of structural design and modification on salinomycin were performed for novel antiviral compounds. It was based on the strategy of similar topological structure binding properties of protein targets (STSBPT), resulting in the high-efficient synthesis of the optimal compound M1, which could bind to aminopeptidase N and 3C-like protease from hosts and viruses, respectively, and exhibit a broad-spectrum antiviral effect against severe acute respiratory syndrome CoV 2 pseudovirus, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, feline infectious peritonitis virus and mouse hepatitis virus. Furthermore, the drug-binding domains of these proteins were found to be structurally similar based on the STSBPT strategy. The compounds screened and designed based on this region were expected to have broad-spectrum and strong antiviral activities. The STSBPT strategy is expected to be a fundamental tool in accelerating the discovery of multiple targets with similar effects and drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Gatos , Ratones , Porcinos , Humanos , Antivirales/química , Infecciones por Coronavirus/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
16.
Front Pharmacol ; 15: 1346226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515838

RESUMEN

Guipi wan (GPW) is a traditional Chinese medicine commonly used in clinical practice, typically to treat neurological diseases such as neurasthenia and traumatic brain injury. It may have positive effects on cerebral ischemia‒reperfusion injury (cI/R). This study aimed to assess the effects of GPW in a mouse model of cI/R and find its possible targets. C57BL/6J mice were used to establish the cI/R model, and the laser speckle doppler was used to determine the success of the model. GPW was administered intragastrically for 7 days, brain tissue sections were stained with TTC, HE, and TUNEL, Western blot assay was performed to detect the effect of apoptosis-related proteins. Furthermore, we screened active ingredients from the TCM Database and constructed a compound‒target network using the Cytoscape 3.8.0 software. Moreover, we employed protein‒protein interaction and component‒target‒pathway network analyses to determine the potential components of GPW and its target genes, the key target was verified through molecular docking. Finally, we detected the influence of the downstream signaling pathway of the target through Western blot. The results showed that GPW decreased the cerebral infarction area, neurological function scores, and neuronal apoptosis in mice by regulating PI3K/AKT signaling pathway. Network analysis indicated that gamma-aminobutyric acid B receptor 1 (GABBR1) might be a potential target for the treatment of cI/R. Molecular docking indicated that 9 active components in GPW could bind to GABBR1 with desirable binding energy. This study represented the demonstratable effect of GPW in the treatment of cI/R injury and suggested GABBR1 as a potential target using network analysis.

18.
J Environ Sci (China) ; 141: 51-62, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408834

RESUMEN

Conversion of labile Pb species into chloropyromorphite (CPY) using phosphorus-bearing amendments was considered to be an ideal strategy in soil passivation remediation. However, the fate and transport of CPY in the soil are poorly understood. This study aims to fill the knowledge gap by evaluating the fate and transport of CPY under environmentally relevant conditions of humic acid (HA), pH, electrolyte concentration, and species through the saturated sandy medium. Results showed that bare CPY colloids are basically immobile in sandy porous media while the co-existence of HA made the transport of CPY improved by 30%-93.5%. Facilitated transport of CPY was attributed to the increased stability of CPY and the repulsive interaction between CPY particles and sands due to HA adsorption. The mobility of CPY was also increased with increasing pH from 5.0 to 9.0. When the pH was 9 with a 10 mmol/L NaCl background solution, the stronger energy barrier between CPY and sand led to enhanced transport behavior. The divalent Ca2+ had a more dramatic effect than monovalent Na+ on the aggregation and sedimentation of CPY colloids due to its effectivescreening of the surface charge of CPY and bridging interaction with CPY particles. Derjaguin-Landau-Verwey-Overbeek theory and attachment efficiency calculation indicated that high energy barriers were responsible for the high mobility of CPY colloids, while the retention of CPY in sands was mainly caused by secondary energy minimum and physically straining. The findings of this work can help to evaluate the fate of soil passivation remediation products in natural water and soil.


Asunto(s)
Sustancias Húmicas , Minerales , Fosfatos , Suelo , Sustancias Húmicas/análisis , Arena , Porosidad , Coloides
19.
Virus Res ; 340: 199303, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38145807

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that mainly causes acute diarrhea/vomiting, dehydration, and mortality in piglets, possessing economic losses and public health concerns. However, there are currently no proven effective antiviral agents against PDCoV. Cepharanthine (CEP) is a naturally occurring alkaloid used as a traditional remedy for radiation-induced symptoms, but its underlying mechanism of CEP against PDCoV has remained elusive. The aim of this study was to investigate the anti-PDCoV effects and mechanisms of CEP in LLC-PK1 cells. The results showed that the antiviral activity of CEP was based on direct action on cells, preventing the virus from attaching to host cells and virus replication. Importantly, Surface Plasmon Resonance (SPR) results showed that CEP has a moderate affinity to PDCoV receptor, porcine aminopeptidase N (pAPN) protein. AutoDock predicted that CEP can form hydrogen bonds with amino acid residues (R740, N783, and R790) in the binding regions of PDCoV and pAPN. In addition, RT-PCR results showed that CEP treatment could significantly reduce the transcription of ZBP1, cytokine (IL-1ß and IFN-α) and chemokine genes (CCL-2, CCL-4, CCL-5, CXCL-2, CXCL-8, and CXCL-10) induced by PDCoV. Western blot analysis revealed that CEP could inhibit viral replication by inducing autophagy. In conclusion, our results suggest that the anti-PDCoV activity of CEP is not only relies on competing the virus binding with pAPN, but also affects the proliferation of the virus in vitro by downregulating the excessive immune response caused by the virus and inducing autophagy. CEP emerges as a promising candidate for potential anti-PDCoV therapeutic development.


Asunto(s)
Benzodioxoles , Bencilisoquinolinas , Infecciones por Coronavirus , Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Animales , Porcinos , Coronavirus/genética , Antígenos CD13/metabolismo
20.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069424

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a member of the family Coronaviridae and the genus Alphacoronavirus, primarily affects piglets under 7 days old, causing symptoms such as diarrhea, vomiting, and dehydration. It has the potential to infect human primary and passaged cells in vitro, indicating a potential risk of zoonotic transmission. In this study, we successfully generated and purified six monoclonal antibodies (mAbs) specifically targeting the spike protein of SADS-CoV, whose epitope were demonstrated specificity to the S1A or S1B region by immunofluorescence assay and enzyme-linked immunosorbent assay. Three of these mAbs were capable of neutralizing SADS-CoV infection on HeLa-R19 and A549. Furthermore, we observed that SADS-CoV induced the agglutination of erythrocytes from both humans and rats, and the hemagglutination inhibition capacity and antigen-antibody binding capacity of the antibodies were assessed. Our study reveals that mAbs specifically targeting the S1A domain demonstrated notable efficacy in suppressing the hemagglutination phenomenon induced by SADS-CoV. This finding represents the first instance of narrowing down the protein region responsible for SADS-CoV-mediated hemagglutination to the S1A domain, and reveals that the cell attachment domains S1A and S1B are the main targets of neutralizing antibodies.


Asunto(s)
Alphacoronavirus , Enfermedades de los Porcinos , Ratas , Animales , Humanos , Porcinos , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA