Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 11: 541426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013384

RESUMEN

Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent antioxidant activity. Here, we investigated the protective effect of SalB against renal ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative stress markers and inflammatory biomarkers, we found that SalB could improve kidney damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1, pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1ß, which were significantly upregulated in the kidney tissues of I/R group, was effectively reversed by SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress, proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.

2.
Biomed Pharmacother ; 109: 1296-1305, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551379

RESUMEN

Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia and edema. The disorder of sodium and water metabolism is a critical mechanism regulating the origination and progression of NS. Zhen-wu-tang (ZWT) has been traditionally used to treat edema disease in China and Japan. The present study was carried out to assess the protective effect of ZWT in Adriamycin-induced (ADR) NS rats and investigate the potential anti-NS mechanisms of ZWT. We found that ZWT treatment ameliorate impaired kidney function and regulate water balance of kidney. Importantly, ZWT increased the expression of Aquaporin-2 (AQP2) which play key roles in maintaining body water homeostasis. Additionally, we determined miRNAs expression patterns in NS rats. Using bioinformatics prediction and miR-92b mimic or inhibitor in vitro, we identified miR-92b as a possible modulator of AQP2. Also we found that ZWT can decrease the expression of miR-92b and reverse the effect of miR-92b on AQP2 in vitro. We further demonstrated that miR-92b directly regulated AQP2 expression by targeting 3'-UTR of AQP2. These finding suggest that ZWT may reduce renal edema in Adriamycin-induced nephropathy via regulating AQP2 and miR-92b.


Asunto(s)
Acuaporina 2/metabolismo , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , MicroARNs/metabolismo , Animales , China , Japón , Riñón/efectos de los fármacos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA