Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 359: 121085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728986

RESUMEN

Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.


Asunto(s)
Metano , Aguas del Alcantarillado , Anaerobiosis , Metano/metabolismo , Compuestos Férricos , Eliminación de Residuos Líquidos/métodos
2.
J Environ Manage ; 351: 119973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160547

RESUMEN

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.


Asunto(s)
Bacterias Anaerobias , Mezclas Complejas , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/química , Bacterias Anaerobias/metabolismo , Metano , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA