Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.457
Filtrar
2.
Angew Chem Int Ed Engl ; : e202407510, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774971

RESUMEN

Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume long chain (C10-C20) saturated dicarboxylic acids in high carbon yield of 85.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.

3.
JCI Insight ; 9(9)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38716728

RESUMEN

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Asunto(s)
Tejido Adiposo , Antígenos CD36 , Dieta Alta en Grasa , Ratones Noqueados , Obesidad , Animales , Femenino , Humanos , Masculino , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/genética
4.
ACS Biomater Sci Eng ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722972

RESUMEN

It still remains challenging to design multifunctional therapeutic reagents for effective cancer therapy under a unique tumor microenvironment including insufficient endogenous H2O2 and O2, low pH, and a high concentration of glutathione (GSH). In this work, a CO-based phototherapeutic system triggered by photogenerated holes, which consisted of ionic liquid (IL), the CO prodrug Mn2(CO)10, and iridium(III) porphyrin (IrPor) modified carbonized ZIF-8-doped graphitic carbon nitride nanocomposite (IL/ZCN@Ir(CO)), was designed for cascade hypoxic tumors. Upon light irradiation, the photogenerated holes on IL/ZCN@Ir(CO) oxidize water into H2O2, which subsequently induces Mn2(CO)10 to release CO. Meanwhile, IrPor can convert H2O2 to hydroxyl radical (•OH) and subsequent singlet oxygen (1O2), which further triggers CO release. Moreover, the degraded MnO2 shows activity for glutathione (GSH) depletion and mimics peroxidase, leading to GSH reduction and •OH production in tumors. Thus, this strategy can in situ release high concentrations of CO and reactive oxygen species (ROS) and deplete GSH to efficiently induce cell apoptosis under hypoxic conditions, which has a high inhibiting effect on the growth of tumors, offering an attractive strategy to amplify CO and ROS generation to meet therapeutic requirements in cancer treatment.

5.
Front Pharmacol ; 15: 1385565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751790

RESUMEN

Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.

6.
J Am Chem Soc ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38754363

RESUMEN

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

7.
Int Orthop ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755444

RESUMEN

PURPOSE: Blood transfusion is a common perioperative complication of primary total knee arthroplasty (TKA) that can lead to adverse outcomes, prolonged hospital stays, and increased medical costs. The purpose of our study was to explore the risk factors for blood transfusion and to establish whether operation duration is independently related to blood transfusion risk in patients undergoing primary TKA after adjusting for other covariates. METHODS: This was a secondary analysis of data from a retrospective cohort study involving patients who underwent primary TKA in Singapore. The patients' baseline data, comorbidity, and surgical characteristics were collected. The independent variable was operation duration and the dependent variable was blood transfusion events. Patients were divided into three groups according to operation durations (90 and 120 min). Univariate logistic regression was used to explore the risk factors associated with blood transfusion after primary TKA. Multivariate analysis was used to assess the independent effect of operation duration on blood transfusion risk after adjusting for other covariates. Additionally, we performed subgroup analyses to identify specific groups, test the robustness of the relationships, and explore whether there were interactions between the different variables. Furthermore, restricted cubic splines (RCS) were used to identify the relationship between the two variables. RESULTS: A total of 2,562 patients were included in the study, of whom 136 (5.61%) had a transfusion event. Operation durations were 95.55 ± 36.93 and 83.86 ± 26.29 min for blood transfused and non-transfused patients, respectively. Univariate logistic regression analysis showed that age, BMI, ASA status, Hb level, OSA, CHF, creatinine level > 2 mg/dL, and anaesthesia type were risk factors for blood transfusion. After adjusting for all covariates, multivariate logistic regression models showed that operation duration was positively associated with blood transfusion risk (odds ratio [OR] = 1.87, 95% CI = 1.174-2.933, P = 0.007). Compared to patients with an operation duration of less than 90 min, those with an operation duration of more than 120 min had a 2.141-fold increased risk of blood transfusion (OR = 2.141, 95% CI = 1.035-4.265, P = 0.035). Stratified analysis results showed that the association persisted in patients aged > 50 years, Chinese, BMI > 30 kg/m 2, Hb level > 11 g/dL, ASA status levels 2 and 3, general anaesthesia, and unilateral primary TKA. A non-linear (P-non-linear = 0.30) and J-shaped relationship was identified. The risk of transfusion increased as the operation duration decreased or exceeded the inflection point (73.2 min). CONCLUSION: Our study demonstrated a non-linear and J-shaped relationship between operation duration and blood transfusion events in patients undergoing primary TKA. Blood transfusion risk was the lowest when the operation duration was 73.2 min. A shorter operation duration implies irregular surgical procedures and incomplete intraoperative haemostasis, leading to increased perioperative blood loss and blood transfusion. These results will be useful for clinical decision-making.

8.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731535

RESUMEN

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Asunto(s)
Antioxidantes , Fermentación , Fragaria , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Compuestos Orgánicos Volátiles/análisis , Fragaria/química , Antioxidantes/análisis , Antioxidantes/química , Odorantes/análisis , Fenoles/análisis , Flavonoides/análisis , Frutas/química , Color
9.
Commun Biol ; 7(1): 561, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734744

RESUMEN

The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the ßN-strand and the extended ßN-ß1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Unión Proteica , Modelos Moleculares , Secuencia de Aminoácidos , Dominios Proteicos
10.
J Diabetes Res ; 2024: 5511454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736904

RESUMEN

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Tejido Adiposo Blanco , Dieta Alta en Grasa , Lipasa , Ratones Endogámicos C57BL , Animales , Ratones , Masculino , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipasa/metabolismo , Lipasa/genética , Obesidad/metabolismo , Lipólisis , Proteína Desacopladora 1/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Adipocitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Lipogénesis , Aciltransferasas
12.
Artículo en Inglés | MEDLINE | ID: mdl-38752640

RESUMEN

BACKGROUND: Many studies have documented the protective effects of regulating macrophage M1/M2 polarization in inflammatory diseases characterized by their imbalance state. In pathological diseases associated with inflammation, mesenchymal stem cells (MSCs) regulate macrophages, thereby having anti-inflammatory and tissue regenerative effects. Exosomes have been suggested as an alternative mechanism that underlies the paracrine function of MSCs. Thus, this study explored the anti-inflammatory impact of human umbilical cord MSCssecreted exosomes (hucMSCs-EX) by influencing macrophage polarization in normal and inflammatory environments in vitro. METHODS: In this study, hucMSCs-conditioned medium (hucMSCs-CM) and hucMSCs- EX were used to treat RAW264.7 macrophages with or without LPS. The expressions of TNF- α, IL-10, IL-6, IL-1ß, and Arg-1 were quantified by qPCR. The expressions of IL-6 and IL-10 were evaluated by ELISAs. Western blots (WB) were performed to observe the expressions of CD206, NF-κB P65, NF-κB p-p65, p-STAT3, STAT3, and NF-κB phosphorylation. The number of cells expressing CD206 and the fluorescence intensity were measured via flow cytometry (FC) and immunofluorescence staining. Cell propagation and migration were examined via MTT and transwell assays, respectively. RESULTS: The inhibition of LPS-induced inflammatory polarization by hucMSCs-EX or hucMSCs- CM led to increases in IL-10 and arginase (Arg) levels and decreases in those of IL-6 and TNF-α. Moreover, hucMSCs-EX enhanced the CD206 expression in RAW264.7 cells and accelerated the propagation and migration of LPS-induced cells. The suppressive impact of hucMSCs-EX on the LPS-induced phenotypic polarization of M1 macrophages was linked with the reduction of NF-κB signaling. They stimulated the transition of M2 macrophages by enhancing the activity of STAT3 in RAW264.7 cells. CONCLUSION: This study indicated that hucMSCs-EX enhances the macrophage transition into the M2 phenotype by inhibiting the NF-κB p65 axis and stimulating that of STAT3.

13.
Front Public Health ; 12: 1371920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694994

RESUMEN

Background: An increasing number of studies suggest that environmental pollution may increase the risk of vitamin D deficiency (VDD). However, less is known about arsenic (As) exposure and VDD, particularly in Chinese pregnant women. Objectives: This study examines the correlations of different urinary As species with serum 25 (OH) D and VDD prevalence. Methods: We measured urinary arsenite (As3+), arsenate (As5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) levels and serum 25(OH)D2, 25(OH)D3, 25(OH) D levels in 391 pregnant women in Tianjin, China. The diagnosis of VDD was based on 25(OH) D serum levels. Linear relationship, Logistic regression, and Bayesian kernel machine regression (BKMR) were used to examine the associations between urinary As species and VDD. Results: Of the 391 pregnant women, 60 received a diagnosis of VDD. Baseline information showed significant differences in As3+, DMA, and tAs distribution between pregnant women with and without VDD. Logistic regression showed that As3+ was significantly and positively correlated with VDD (OR: 4.65, 95% CI: 1.79, 13.32). Meanwhile, there was a marginally significant positive correlation between tAs and VDD (OR: 4.27, 95% CI: 1.01, 19.59). BKMR revealed positive correlations between As3+, MMA and VDD. However, negative correlations were found between As5+, DMA and VDD. Conclusion: According to our study, there were positive correlations between iAs, especially As3+, MMA and VDD, but negative correlations between other As species and VDD. Further studies are needed to determine the mechanisms that exist between different As species and VDD.


Asunto(s)
Arsénico , Deficiencia de Vitamina D , Humanos , Femenino , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/orina , Embarazo , Estudios Transversales , China/epidemiología , Adulto , Arsénico/orina , Arsénico/sangre , Prevalencia , Arsenicales/orina , Vitamina D/sangre , Vitamina D/orina , Complicaciones del Embarazo/orina , Complicaciones del Embarazo/epidemiología , Modelos Logísticos , Pueblos del Este de Asia
14.
Nano Lett ; 24(19): 5808-5815, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710049

RESUMEN

In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.


Asunto(s)
Células Presentadoras de Antígenos , Comunicación Celular , ADN , ADN/química , Humanos , Células Presentadoras de Antígenos/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Activación de Linfocitos , Neoplasias/patología , Neoplasias/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-38748238

RESUMEN

OBJECTIVE: To investigate the mediating role of depressive symptoms in the relationship between negative life events (NLEs) and suicidality, as well as to test the moderating effect of self-esteem in the mediation model. METHODS: A total of 3,003 adolescents from Han, Tibetan, and Yi ethnic groups living in Western China were included in this study. Utilizing the structural equation model, a mediation model and a moderated mediation model were constructed. RESULTS: The presence of NLEs was positively associated with suicidality (ß = 0.17, p < 0.001). Depressive symptoms partially mediated the relationship between NLEs and suicidality (indirect effect ß = 0.19, p < 0.001). Self-esteem moderated both the antecedent and subsequent segments of the mediating paths of "NLEs → depressive symptoms → suicidality" and the direct relationship between NLEs and suicidality. Among adolescents with a low level of self-esteem, the mediating effect coefficient of depressive symptoms was higher at 0.18 (95% confidence interval (CI): 0.14-0.23), in contrast to adolescents with a high level of self-esteem, where the mediating effect coefficient of depressive symptoms was 0.04 (95% CI: 0.02-0.07). CONCLUSION: NLEs are directly associated with an increased risk of suicidality and indirectly related to suicidality by increasing the risk of depressive symptoms among adolescents. Self-esteem can moderate the mediating effect of depressive symptoms and the relationship between NLEs and suicidality. The intervention strategy for preventing suicidality among adolescents who have experienced NLEs should focus on reducing depressive symptoms and improving self-esteem.

16.
Sci Rep ; 14(1): 10886, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740972

RESUMEN

In the production process, the presence of surface defects seriously affects the quality of industrial products. Existing defect detectors are not suitable for surface with scattered distribution and complex texture of defects. In this study, a dual-branch information extraction and local attention anchor-free network for defect detection (DLA-FCOS), which is based on the fully convolutional one-stage network, is proposed to accurately locate and detect surface defects of industrial products. Firstly, a dual-branch feature extraction network (DFENeT) is proposed and used to improve the extraction ability of complex defects. Then, a local feature enhancement module is proposed, and a residual connection is established to enrich local semantic information. Meanwhile, the self-attention mechanism is introduced to form local attentional residual feature pyramid networks (LA-RFPN) to eliminate the influences of feature misalignments. The mean average accuracy (mAP) and frames per second (FPS) of the proposed DLA-FCOS on the cut layer of the tobacco packet defect dataset (CLTP-DD) are 96.8% and 20.7, respectively, which meets the requirements for accurate and real-time defect detection. Meanwhile, the average accuracy of the proposed DLA-FCOS on the NEU-DET and GC10-DET datasets is 78.4% and 67.7%, respectively. The results demonstrate that the DLA-FCOS has good feasibility and high generalization capability to perform defect detection tasks of industrial products.

17.
J Control Release ; 370: 691-706, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723671

RESUMEN

Vaccination is essential for preventing and controlling infectious diseases, along with reducing mortality. Developing safe and versatile adjuvants to enhance humoral and cellular immune responses to vaccines remains a key challenge in vaccine development. Here, we designed hierarchical mesoporous MOF-801 (HM801) using a Cocamidopropyl betaine (CAPB) and a Pluronics F127 in an aqueous phase system. Meanwhile, we synthesized a novel SARS-CoV-2 nanovaccine (R@M@HM801) with a high loading capacity for both the STING agonist (MSA-2) and the Delta receptor binding domain (Delta-RBD) antigen. R@M@HM801 enhanced MSA-2 and RBD utilization and effectively co-delivered MSA-2 and RBD antigens to antigen-presenting cells in the draining lymph nodes, thereby promoting the activation of both T and B cells. Lymphocyte single-cell analysis showed that R@M@HM801 stimulated robust CD11b+CD4+ T cells, CXCR5+CD4+ T follicular helper (Tfh), and durable CD4+CD44+CD62L-, CD8+CD44+CD62L- effector memory T cell (TEM) immune responses, and promoted the proliferative activation of CD26+ B cells in vivo. Meanwhile, R@M@HM801 induced stronger specific antibodies and neutralization of pseudovirus against Delta compared to the RBD + MAS-2 and RBD + MAS-2 + Alum vaccines. Our study demonstrated the efficacy of a hierarchical mesoporous HM801 and its potential immune activation mechanism in enhancing adaptive immune responses against viruses and other diseases.

18.
Beilstein J Org Chem ; 20: 912-920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711586

RESUMEN

A new method for the synthesis of heterocyclic systems containing tetrazole and tetrahydroisoquinoline is developed via the performance of one-pot Ugi-azide and Heck cyclization reactions. The integration of the multicomponent and post-condensation reactions in one-pot maximizes the pot-, atom-, and step-economy (PASE).

19.
Front Bioeng Biotechnol ; 12: 1385552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699434

RESUMEN

Raman spectroscopy is an optical technique that uses inelastic light scattering in response to vibrating molecules to produce chemical fingerprints of tissues, cells, and biofluids. Raman spectroscopy strategies produce high levels of chemical specificity without requiring extensive sample preparation, allowing for the use of advanced optical tools such as microscopes, fiber optics, and lasers that operate in the visible and near-infrared spectral range, making them increasingly suitable for a wide range of medical diagnostic applications. Metal nanoparticles and nonlinear optical effects can improve Raman signals, and optimized fiber optic Raman probes can make real-time, in vivo, single-point observations. Furthermore, diagnostic speed and spatial accuracy can be improved through the multimodal integration of Raman measurements and other technologies. Recent studies have significantly contributed to the improvement of diagnostic speed and accuracy, making them suitable for clinical application. Lung cancer is a prevalent type of respiratory malignancy. However, the use of computed tomography for detection and screening frequently reveals numerous smaller lung nodules, which makes the diagnostic process more challenging from a clinical perspective. While the majority of small nodules detected are benign, there are currently no direct methods for identifying which nodules represent very early-stage lung cancer. Positron emission tomography and other auxiliary diagnostic methods for non-surgical biopsy samples from these small nodules yield low detection rates, which might result in significant expenses and the possibility of complications for patients. While certain subsets of patients can undergo curative treatment, other individuals have a less favorable prognosis and need alternative therapeutic interventions. With the emergence of new methods for treating cancer, such as immunotherapies, which can potentially extend patient survival and even lead to a complete cure in certain instances, it is crucial to determine the most suitable biomarkers and metrics for assessing the effectiveness of these novel compounds. This will ensure that significant treatment outcomes are accurately measured. This review provides a comprehensive overview of the prospects of Raman spectroscopy and its applications in the diagnosis and analysis of lung tumors.

20.
Travel Med Infect Dis ; 60: 102724, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692338

RESUMEN

BACKGROUND: Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD: The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS: From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS: The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA