Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Nano ; 17(5): 4261-4278, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36706095

RESUMEN

Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.


Asunto(s)
Nanopartículas , Fármacos Fotosensibilizantes , Terapia Fototérmica , Neoplasias de la Mama Triple Negativas , Humanos , Muerte Celular , Línea Celular Tumoral , Hierro/administración & dosificación , Hierro/uso terapéutico , Nanopartículas/administración & dosificación , Nanopartículas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Femenino , Rayos Infrarrojos/uso terapéutico , Terapia Fototérmica/métodos , Sulfuros/administración & dosificación , Sulfuros/uso terapéutico , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Ferroptosis/efectos de los fármacos , Ferroptosis/efectos de la radiación
2.
J Nucl Med ; 64(1): 177-182, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738902

RESUMEN

Medical radioisotopes produce Cerenkov luminescence (CL) from charged subatomic particles (ß+/-) traveling faster than light in dielectric media (e.g., tissue). CL is a blue-weighted and continuous emission, decreasing proportionally to increasing wavelength. CL imaging (CLI) provides an economic PET alternative with the advantage of also being able to image ß- and α emitters. Like any optical modality, CLI is limited by the optical properties of tissue (scattering, absorption, and ambient photon removal). Shortwave-infrared (SWIR, 900-1700 nm) CL has been detected from MeV linear accelerators but not yet from keV medical radioisotopes. Methods: Indium-gallium-arsenide sensors and SWIR lenses were mounted onto an ambient light-excluding preclinical enclosure. An exposure and processing pipeline was developed for SWIR CLI and then performed across 6 radioisotopes at in vitro and in vivo conditions. Results: SWIR CL was detected from the clinical radioisotopes 90Y, 68Ga, 18F, 89Zr, 131I, and 32P (biomedical research). SWIR CLI's advantage over visible-wavelength (VIS) CLI (400-900 nm) was shown via increased light penetration and decreased scattering at depth. The SWIR CLI radioisotope sensitivity limit (8.51 kBq/µL for 68Ga), emission spectrum, and ex vivo and in vivo examples are reported. Conclusion: This work shows that radioisotope SWIR CLI can be performed with unmodified commercially available components. SWIR CLI has significant advantages over VIS CLI, with preserved VIS CLI features such as radioisotope radiance levels and dose response linearity. Further improvements in SWIR optics and technology are required to enable widespread adoption.


Asunto(s)
Radioisótopos de Galio , Luminiscencia , Radioisótopos , Tomografía de Emisión de Positrones/métodos
3.
Nanotheranostics ; 6(2): 184-194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976593

RESUMEN

The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to prepare nanomaterials of relatively smaller sizes has increased the likelihood of use in vivo. In this review, we summarize the different emerging applications of nanoparticles with rare earth elements as the host or doped elements for biomedical applications in the past three to four years, especially in the area of imaging and disease diagnosis. Researchers have made progress in utilizing surfactants and polymers to modify the surface of lanthanide nanoparticles to enhance biocompatibility. At the same time, specific antibodies and proteins can also be conjugated to these nanoparticles to increase targeting efficiency for specific tumor models. Finally, in the near-infrared II imaging window, lanthanide nanoparticles have been shown to exhibit extraordinary bright emission, which is an exciting development for image-guided surgery.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas del Metal , Nanoestructuras , Diagnóstico por Imagen , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Nanoestructuras/uso terapéutico
4.
Nano Lett ; 21(10): 4217-4224, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33950695

RESUMEN

Cerenkov imaging provides an opportunity to expand the application of approved radiotracers and therapeutic agents by utilizing them for optical approaches, which opens new avenues for nuclear imaging. The dominating Cerenkov radiation is in the UV/blue region, where it is readily absorbed by human tissue, reducing its utility in vivo. To solve this problem, we propose a strategy to shift Cerenkov light to the more penetrative red-light region through the use of a fluorescent down-conversion technique, based upon europium oxide nanoparticles. We synthesized square-shape ultrasmall Eu2O3 nanoparticles, functionalized with polyethylene glycol and chelate-free radiolabeled for intravenous injection into mice to visualize the lymph node and tumor. By adding trimethylamine N-oxide during the synthesis, we significantly increased the brightness of the particle and synthesized the (to-date) smallest radiolabeled europium-based nanoparticle. These features allow for the exploration of Eu2O3 nanoparticles as a preclinical cancer diagnosis platform with multimodal imaging capability.


Asunto(s)
Europio , Nanopartículas , Animales , Ratones , Imagen Multimodal
5.
Nanoscale ; 13(23): 10365-10384, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33988208

RESUMEN

We report nanoscale Eu0.5Ba0.5TiO3, a multiferroic in the bulk and candidate in the search to quantify the electric dipole moment of the electron. Eu0.5Ba0.5TiO3, in the form of nanoparticles and other nanostructures is interesting for nanocomposite integration, biomedical imaging and fundamental research, based upon the prospect of polarizability, f-orbital magnetism and tunable optical/radio luminescence. We developed a [non-hydrolytic]sol-[H2O-activated]gel route, derived from in-house metallic Ba(s)/Eu(s) alkoxide precursors and Ti{(OCH(CH3)2}4. Two distinct nanoscale compounds of Ba:Ti:Eu with the parent perovskite crystal structure were produced, with variable dielectric, magnetic and optical properties, based on altering the oxidizing/reducing conditions. Eu0.5Ba0.5TiO3 prepared under air/O2 atmospheres produced a spherical core-shell nanostructure (30-35 nm), with perovskite Eu0.5Ba0.5TiO3 nanocrystal core-insulating oxide shell layer (∼3 nm), presumed a pre-pyrochlore layer abundant with Eu3+. Fluorescence spectroscopy shows a high intensity 5D0→7F2 transition at 622 nm and strong red fluorescence. The core/shell structure demonstrated excellent capacitive properties: assembly into dielectric thin films gave low conductivity (2133 GΩ mm-1) and an extremely stable, low loss permittivity of εeff∼25 over a wide frequency range (tan δ < 0.01, 100 kHz-2 MHz). Eu0.5Ba0.5TiO3 prepared under H2/argon produced more irregular shaped nanocrystals (20-25) nm, with a thin film permittivity around 4 times greater (εeff 101, tan δ < 0.05, 10 kHz-2 MHz, σ∼59.54 kΩ mm-1). Field-cooled magnetization values of 0.025 emu g-1 for EBTO-Air and 0.84 emu g-1 for EBTO-Argon were observed. X-ray photoelectron spectroscopy analysis reveals a complex interplay of EuII/III/TiIII/IV configurations which contribute to the observed ferroic and fluorescence behavior.

6.
Theranostics ; 11(6): 2534-2549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33456558

RESUMEN

Rationale: Most contemporary cancer therapeutic paradigms involve initial imaging as a treatment roadmap, followed by the active engagement of surgical operations. Current approved intraoperative contrast agents exemplified by indocyanine green (ICG) have a few drawbacks including the inability of pre-surgical localization. Alternative near-infrared (NIR) dyes including IRDye800cw are being explored in advanced clinical trials but often encounter low chemical yields and complex purifications owing to the asymmetric synthesis. A single contrast agent with ease of synthesis that works in multiple cancer types and simultaneously allows presurgical imaging, intraoperative deep-tissue three-dimensional visualization, and high-speed microscopic visualization of tumor margins via spatiotemporally complementary modalities would be beneficial. Methods: Due to the lack of commercial availability and the absence of detailed synthesis and characterization, we proposed a facile and scalable synthesis pathway for the symmetric NIR water-soluble heptamethine sulfoindocyanine IRDye78. The synthesis can be accomplished in four steps from commercially-available building blocks. Its symmetric resonant structure avoided asymmetric synthesis problems while still preserving the benefits of analogous IRDye800cw with commensurable optical properties. Next, we introduced a low-molecular-weight protein alpha-lactalbumin (α-LA) as the carrier that effectively modulates the hepatic clearance of IRDye78 into the preferred renal excretion pathway. We further implemented 89Zr radiolabeling onto the protein scaffold for positron emission tomography (PET). The multimodal imaging capability of the fluorophore-protein complex was validated in breast cancer and glioblastoma. Results: The scalable synthesis resulted in high chemical yields, typically 95% yield in the final step of the chloro dye. Chemical structures of intermediates and the final fluorophore were confirmed. Asymmetric IRDye78 exhibited comparable optical features as symmetric IRDye800cw. Its well-balanced quantum yield affords concurrent dual fluorescence and optoacoustic contrast without self-quenching nor concentration-dependent absorption. The NHS ester functionality modulates efficient covalent coupling to reactive side-chain amines to the protein carrier, along with desferrioxamine (DFO) for stable radiolabeling of 89Zr. The fluorophore-protein complex advantageously shifted the biodistribution and can be effectively cleared through the urinary pathway. The agent accumulates in tumors and enables triple-modal visualization in mouse xenograft models of both breast and brain cancers. Conclusion: This study described in detail a generalized strategic modulation of clearance routes towards the favorable renal clearance, via the introduction of α-LA. IRDye78 as a feasible alternative of IRDye800cw currently in clinical phases was proposed with a facile synthesis and fully characterized for the first time. This fluorophore-protein complex with stable radiolabeling should have great potential for clinical translation where it could enable an elegant workflow from preoperative planning to intraoperative deep tissue and high-resolution image-guided resection.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Colorantes Fluorescentes/metabolismo , Glioblastoma/diagnóstico por imagen , Verde de Indocianina/metabolismo , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirugía , Línea Celular Tumoral , Femenino , Fluorescencia , Glioblastoma/metabolismo , Glioblastoma/cirugía , Humanos , Indoles/metabolismo , Lactalbúmina/metabolismo , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Tomografía Computarizada por Rayos X/métodos
7.
Nat Nanotechnol ; 13(5): 418-426, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29581551

RESUMEN

In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, ß particles and γ radiation. We demonstrate that ß-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.


Asunto(s)
Rayos gamma , Luminiscencia , Nanopartículas , Neoplasias Experimentales/tratamiento farmacológico , Fotoquimioterapia/métodos , Rayos X , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
ACS Appl Mater Interfaces ; 9(49): 43197-43204, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29135224

RESUMEN

Recent interest in detecting visible photons that emanate from interactions of ionizing radiation (IR) with matter has spurred the development of multifunctional materials that amplify the optical signal from radiotracers. Tailored stimuli-responsive systems may be paired with diagnostic radionuclides to improve surgical guidance and aid in detecting therapeutic radionuclides otherwise difficult to image with conventional nuclear medicine approaches. Because light emanating from these interactions is typically low in intensity and blue-weighted (i.e., greatly scattered and absorbed in vivo), it is imperative to increase or shift the photon flux for improved detection. To address this challenge, a gel that is both scintillating and fluorescent is used to enhance the optical photon output in image mapping for cancer imaging. Tailoring biobased materials to synthesize thixotropic thermoreversible hydrogels (a minimum gelation concentration of 0.12 wt %) offers image-aiding systems which are not only functional but also potentially economical, safe, and environmentally friendly. These robust gels (0.66 wt %, ∼900 Pa) respond predictably to different types of IRs including ß- and γ-emitters, resulting in a doubling of the detectable photon flux from these emitters. The synthesis and formulation of such a gel are explored with a focus on its physicochemical and mechanical properties, before being utilized to enhance the visible photon flux from a panel of radionuclides as detected. The possibility of developing a topical cream of this gel makes this system an attractive potential alternative to current techniques, and the multifunctionality of the gelator may serve to inspire future next-generation materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA