Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6751, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117705

RESUMEN

Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Factores de Transcripción , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Humanos , Factores de Transcripción/metabolismo , Unión Proteica , Proliferación Celular/efectos de los fármacos , ARN Polimerasa II/metabolismo , Células HEK293 , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores
2.
Cancer ; 130(S8): 1415-1423, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38079306

RESUMEN

BACKGROUND: Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS: Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS: Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS: Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Receptor de Muerte Celular Programada 1 , Proteína-Arginina N-Metiltransferasas/genética , Inmunoterapia , Muerte Celular , Microambiente Tumoral
3.
Biochem Biophys Res Commun ; 665: 55-63, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37148745

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype with poor prognoses and limited therapeutic options. The TATA-box binding protein associated factor 1 (TAF1) is an essential protein involved in the transcriptional regulation of cancer development and progress. However, the therapeutic potential and underlying mechanism of targeting TAF1 in TNBC remain unknown. Here, using chemical probe BAY-299, we identify that TAF1 inhibition leads to the induction of endogenous retrovirus (ERVs) expression and double-stranded RNA (dsRNA) formation, resulting in the activation of interferon responses and cell growth suppression in a subset of TNBC, resembling anti-viral mimicry effect. This correlation between TAF1 and interferon signature was validated in three independent breast cancer patient datasets. Furthermore, we observe heterogeneous responses to TAF1 inhibition across a set of TNBC cell lines. By integrating transcriptome and proteome data, we demonstrate that high levels of proliferating cell nuclear antigen (PCNA) protein serve as a predictive biomarker associated with suppressive tumor immune responses in various cancers, which may limit the efficiency of TAF1 inhibition.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Interferones/farmacología , Transcriptoma , Neoplasias de la Mama Triple Negativas/patología
4.
Front Cell Dev Biol ; 9: 759154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917611

RESUMEN

Background: This study aimed to investigate the TP53 mutation, its potential immune features, its prognostic value, and its impact on immune infiltration in patients with breast cancer (BC). Methods: We downloaded the somatic mutation data and clinicopathologic features of BC patients from the TCGA GDC database, UCSC Xena platform, and International Cancer Genome Consortium (ICGC) database. The association between the TP53 mutation, clinicopathology features, and overall survival (OS) in BC patients was analyzed. We evaluated the potential role of the TP53 mutation in the immune therapy response, including the tumor mutation burden (TMB), microsatellite instability (MSI), and tumor immune dysfunction and exclusion (TIDE). Moreover, ESTIMATE was employed to assess the ImmuneScore and StromalScore in BC patients. We also explored immunocyte infiltration related to the TP53 mutation and its potential mechanism. Immunohistochemistry (IHC) was performed to validate the association between the expression of CXCL1, CXCL10, and CCL20 and TP53 status. Results: We found that the TP53 mutation was significantly associated with the shorter OS (p = 0.038) and was also an independent predictive factor of OS for BC patients (p < 0.001). Compared to that in the wild type group, the TP53-mutant group showed a higher TMB value (P< 0.001), MSI value (p = 0.077), and TIDE value (p < 0.001) with respect to BC patient immunotherapy. In addition, the ImmuneScore and StromalScore were both significantly increased in the TP53-mutant group (ImmuneScore: p < 0.001; StromalScore: p = 0.003). The results of CIBERSORT suggested that the TP53 mutation significantly promoted the infiltration of Tregs, T helper cells, and M0-type macrophages. KEGG and GSEA enrichment results suggested that the IL-17 signaling pathway and antigen processing and presentation pathways were significantly enriched in the TP53-mutant group. Importantly, based on IHC results of immune-related hub-genes, the chemokines CXCL1, CXCL10, and CCL20 were significantly upregulated in the TP53-mutant group in BC patients. Conclusion: These results indicate that a TP53 mutation might serve as a biomarker for BC prognosis and is related to immunocyte infiltration in the tumor microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA