Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Poult Sci ; 103(7): 103848, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843610

RESUMEN

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Columbidae , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/diagnóstico , Infecciones por Adenoviridae/virología , Infecciones por Adenoviridae/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , China/epidemiología , Aviadenovirus/aislamiento & purificación , Aviadenovirus/genética , Enfermedades de las Aves/virología , Enfermedades de las Aves/diagnóstico , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico
2.
Hematology ; 29(1): 2335856, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38581291

RESUMEN

Philadelphia chromosome-positive acute lymphoblastic leukemia (PH + ALL) is the most common cytogenetic abnormality of B-ALL in adults and is associated with poor prognosis. Previously, the only curative treatment option in PH + ALL was allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Since 2000, targeted therapy combined with chemotherapy, represented by the tyrosine kinase inhibitor Imatinib, has become the first-line treatment for PH + ALL. Currently, the remission rate and survival rate of Imatinib are superior to those of simple chemotherapy, and it can also improve the efficacy of transplantation. More recently, some innovative immune-targeted therapy greatly improved the prognosis of PH + ALL, such as Blinatumomab and Inotuzumab Ozogamicin. For patients with ABL1 mutations and those who have relapsed or are refractory to other treatments, targeted oral small molecule drugs, monoclonal antibodies, Bispecific T cell Engagers (BiTE), and chimeric antigen receptor (CAR) T cells immunotherapy are emerging as potential treatment options. These new therapeutic interventions are changing the treatment landscape for PH + ALL. In summary, this review discusses the current advancements in targeted therapeutic agents shift in the treatment strategy of PH + ALL towards using more tolerable chemotherapy-free induction and consolidation regimens confers better disease outcomes and might obviate the need for HSCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Mesilato de Imatinib/uso terapéutico , Cromosoma Filadelfia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598012

RESUMEN

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Asunto(s)
Arabidopsis , MicroARNs , ARN Largo no Codificante , ARN Endógeno Competitivo , ARN Largo no Codificante/genética , Ácido Abscísico/farmacología , Arabidopsis/genética , Manitol , MicroARNs/genética , ARN Mensajero , Triticum/genética , Ceras
4.
Plant Biotechnol J ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491985

RESUMEN

Genetic transformation is a critical tool for gene editing and genetic improvement of plants. Although many model plants and crops can be genetically manipulated, genetic transformation systems for fruit trees are either lacking or perform poorly. We used Rhizobium rhizogenes to transfer the target gene into the hairy roots of Malus domestica and Actinidia chinensis. Transgenic roots were generated within 3 weeks, with a transgenic efficiency of 78.8%. Root to shoot conversion of transgenic hairy roots was achieved within 11 weeks, with a regeneration efficiency of 3.3%. Finally, the regulatory genes involved in stem cell activity were used to improve shoot regeneration efficiency. MdWOX5 exhibited the most significant effects, as it led to an improved regeneration efficiency of 20.6% and a reduced regeneration time of 9 weeks. Phenotypes of the overexpression of RUBY system mediated red roots and overexpression of MdRGF5 mediated longer root hairs were observed within 3 weeks, suggesting that the method can be used to quickly screen genes that influence root phenotype scores through root performance, such as root colour, root hair, and lateral root. Obtaining whole plants of the RUBY system and MdRGF5 overexpression lines highlights the convenience of this technology for studying gene functions in whole plants. Overall, we developed an optimized method to improve the transformation efficiency and stability of transformants in fruit trees.

5.
Front Cell Dev Biol ; 12: 1370287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434618

RESUMEN

Parkinson's Disease (PD) is characterized by the temporary alleviation of motor symptoms following electrode implantation (or nucleus destruction), known as the microlesion effect (MLE). Electrophysiological studies have explored different PD stages, but understanding electrophysiological characteristics during the MLE period remains unclear. The objective was to examine the characteristics of local field potential (LFP) signals in the subthalamic nucleus (STN) during the hyperacute period following implantation (within 2 days) and 1 month post-implantation. 15 patients diagnosed with PD were enrolled in this observational study, with seven simultaneous recordings of bilateral STN-LFP signals using wireless sensing technology from an implantable pulse generator. Recordings were made in both on and off medication states over 1 month after implantation. We used a method to parameterize the neuronal power spectrum to separate periodic oscillatory and aperiodic components effectively. Our results showed that beta power exhibited a significant increase in the off medication state 1 month after implantation, compared to the postoperative hyperacute period. Notably, this elevation was effectively attenuated by levodopa administration. Furthermore, both the exponents and offsets displayed a decrease at 1 month postoperatively when compared to the hyperacute postoperative period. Remarkably, levodopa medication exerted a modulatory effect on these aperiodic parameters, restoring them back to levels observed during the hyperacute period. Our findings suggest that both periodic and aperiodic components partially capture distinct electrophysiological characteristics during the MLE. It is crucial to adequately evaluate such discrepancies when exploring the mechanisms of MLE and optimizing adaptive stimulus protocols.

6.
Biomimetics (Basel) ; 9(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392144

RESUMEN

In this paper, an adaptive knee joint orthosis with a variable rotation center for biomimetic motion rehabilitation assistance suitable for patients with knee joint movement dysfunction is designed. Based on the kinematic information of knee joint motion obtained by a motion capture system, a Revolute-Prismatic-Revolute (RPR) model is established to simulate the biomimetic motion of the knee joint, then a corresponding implementation for repetitively driving the flexion-extension motion of the knee joint, mainly assembled by a double-cam meshing mechanism, is designed. The pitch curve of each cam is calculated based on the screw theory. During the design process, size optimization is used to reduce the weight of the equipment, resulting in a reduction from 1.96 kg to 1.16 kg, achieving the goal of lightweight equipment. Finally, a prototype of the designed orthosis with the desired biomimetic rotation function is prepared and verified. The result shows that the rotation center of the prototype can achieve biomimetic motion coincident with the rotation center of an active knee joint, which can successfully provide rehabilitation assistance for the knee joint flexion-extension motion.

7.
Toxicol Res (Camb) ; 13(1): tfae010, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38292893

RESUMEN

Background: Bladder cancer (BLCA) is one of the most prevalent cancers worldwide. Ferroptosis is a newly discovered form of non-apoptotic cell death that plays an important role in tumors. However, the prognostic value of ferroptosis-related genes (FRGs) in BLCA has not yet been well studied. Method and materials: In this study, we performed consensus clustering based on FRGS and categorized BLCA patients into 2 clusters (C1 and C2). Immune cell infiltration score and immune score for each sample were computed using the CIBERSORT and ESTIMATE methods. Functional annotation of differentially expressed genes were performed by Gene Ontology (GO) and KEGG pathway enrichment analysis. Protein expression validation were confirmed in Human Protein Atlas. Gene expression validation were performed by qPCR in human bladder cancer cell lines lysis samples. Result: C2 had a significant survival advantage and higher immune infiltration levels than C1. Additionally, C2 showed substantially higher expression levels of immune checkpoint markers than C1. According to the Cox and LASSO regression analyses, a novel ferroptosis-related prognostic signature was developed to predict the prognosis of BLCA effectively. High-risk and low-risk groups were divided according to risk scores. Kaplan-Meier survival analyses showed that the high-risk group had a shorter overall survival than the low-risk group throughout the cohort. Furthermore, a nomogram combining risk score and clinical features was developed. Finally, SLC39A7 was identified as a potential target in bladder cancer. Discussion: In conclusion, we identified two ferroptosis-clusters with different prognoses using consensus clustering in BLCA. We also developed a ferroptosis-related prognostic signature and nomogram, which could indicate the outcome.

8.
J Virol Methods ; 324: 114857, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029971

RESUMEN

A multiplex polymerase chain reaction (PCR) method was developed to detect and distinguish goose parvovirus (GPV), waterfowl reovirus (WRV), and goose astrovirus (GAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of these enteric viruses and were used to specifically amplify targeted fragments of 493 bp from the viral protein 3 (VP3) gene of GPV, 300 bp from the sigma A-encoding gene of WRV, and 156 bp from the capsid protein-encoding gene of GAstV. The results showed that the primers can specifically amplify target fragments, without any cross-amplification with other viruses, indicating that the method had good specificity. A sensitivity test showed that the detection limit of the multiplex PCR method was 1 × 103 viral copies. A total of 102 field samples from Muscovy ducks with clinically suspected diseases were evaluated using the newly developed multiplex PCR method. The ratio of positive samples to total samples for GPV, WRV, and GAstV was 73.53% (75/102) for multiplex PCR and was 73.53% (75/102) for routine PCR. Seventy-five positive samples were detected by both methods, for a coincidence ratio of 100%. This multiplex PCR method can simultaneously detect GPV, WRV, and GAstV, which are associated with viral enteritis, thereby providing a specific, sensitive, efficient, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus , Enfermedades de las Aves de Corral , Virus ARN , Reoviridae , Animales , Patos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Parvoviridae/diagnóstico , Infecciones por Parvoviridae/veterinaria , Enfermedades de las Aves de Corral/diagnóstico , Reoviridae/genética , Virus ARN/genética , Anticuerpos Antivirales , Gansos , Parvovirus/genética
9.
Cancer Biol Ther ; 25(1): 2290033, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38073044

RESUMEN

Tumor-derived exosomes are highly correlated with tumor progression and angiogenesis. This study was designed to probe the role of tumor-derived exosomal miR-1247-3p in mediating the angiogenesis in bladder cancer. Exosomes isolation from the culture medium of normal or bladder cancer cell lines was performed using a differential centrifugation method. miR-1247-3p expression in exosomes and cells was detected by quantitative real-time PCR (qRT-PCR). The effect of exosomes on the angiogenesis of human umbilical vein endothelial cells (HUVECs) was assessed using cell counting kit-8 (CCK-8), transwell and tube formation assays. The interaction between miR-1247-3p and forkhead box protein O1 (FOXO1) was studied using luciferase reporter and RNA pull down assays. Exosomes were successfully isolated from T24, UM-UC-3, and SV-HUC-1 cells, as confirmed by corresponding identifications. Functional experiments revealed that exosomes derived from T24 and UM-UC-3 cells significantly enhanced the abilities of proliferation, migration, angiogenesis, and vascular endothelial-derived growth factor (VEGF) secretion in HUVECs. miR-1247-3p was highly expressed in exosomes derived from T24 and UM-UC-3 cells, and exosomes derived from miR-1247-3p inhibitor-transfected cells reduced HUVEC viability, migration, tube formation, and VEGF level. FOXO1 was confirmed as a direct target of miR-1247-3p. Rescue assays suggested that the effect of miR-1247-3p inhibition on the viability, migration, and angiogenesis of HUVECs was partly abrogated by the knockdown of FOXO1. Our data suggest that miR-1247-3p is up-regulated in tumor-derived exosomes, thereby inhibiting FOXO1 expression and facilitating angiogenesis in bladder cancer.


Asunto(s)
Exosomas , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Angiogénesis , Proliferación Celular/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Línea Celular Tumoral , Exosomas/genética , Exosomas/metabolismo , Neoplasias de la Vejiga Urinaria/patología
10.
Adv Sci (Weinh) ; 10(30): e2303711, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37672887

RESUMEN

The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-ß1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-ß1. Knocking down THBS1 can rescue ER stress by interacting with TGF-ß1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-ß1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-ß1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Factor de Crecimiento Transformador beta1/genética
11.
PeerJ ; 11: e15872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637153

RESUMEN

Background: Changes in cerebral haemodynamics following endovascular therapy (EVT) for large-vessel occlusion stroke may affect the outcomes of patients with acute ischaemic stroke (AIS); however, evidence supporting this belief is limited. This study aims to identify the early haemodynamic predictors of poor outcomes in patients with AIS caused by anterior circulation large-artery occlusion after undergoing EVT and to evaluate the usefulness of these indicators in predicting functional outcomes at 90 days. Methods: This retrospective study was conducted at a single academic hospital, using prospectively collected data. We enrolled adult patients with acute anterior circulation stroke who underwent EVT. Transcranial colour-coded sonography (TCCS) examinations of the recanalised and contralateral middle cerebral artery (MCA) were performed within 12 h after undergoing EVT. Haemodynamic indicators were analysed to determine their association with poor functional outcomes (modified Rankin Scale: 3-6) 90 days after stroke. Receiver operating characteristic (ROC) curves were used to evaluate the usefulness of haemodynamic indicators in predicting functional outcomes. Results: In total, 108 patients (median age: 66 years; 69.4% males) were enrolled in this study. Complete recanalization was achieved in 93 patients (86.1%); however, 60 patients (55.6%) had a poor 90-day outcome. The peak systolic velocity (PSV) ratio, adjusted PSV ratio, mean flow velocity (MFV) ratio, and adjusted MFV ratio of the MCA were significantly higher in patients with poor prognosis than in patients with good prognosis (p < 0.02). A multivariate logistic regression analysis showed that higher PSV ratio, adjusted PSV ratio, MFV ratio, and adjusted MFV ratio were independently associated with a poor 90-day outcomes (adjusted odds ratio: 1.11-1.48 for every 0.1 increase; p < 0.03). Furthermore, adding the adjusted MFV ratio significantly improved the prediction ability of the basic model for the 90-day poor functional outcome using the ROC analysis, the areas under ROC curves increased from 0.75 to 0.85 (p = 0.013). Conclusions: Early TCCS examination may help in predicting poor functional outcomes at 90 days in patients with AIS who underwent EVT. Moreover, combining novel TCCS indicators (adjusted MFV ratio) with conventional parameters improved the prediction ability of the base model.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Maloclusión de Angle Clase III , Accidente Cerebrovascular , Adulto , Anciano , Femenino , Humanos , Masculino , Isquemia Encefálica/diagnóstico por imagen , China/epidemiología , Hemodinámica , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Arteria Cerebral Media/diagnóstico por imagen , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico por imagen
12.
New Phytol ; 240(2): 710-726, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37547968

RESUMEN

MicroRNAs (miRNAs) play crucial roles in regulating plant development and stress responses. However, the functions and mechanism of intronic miRNAs in plants are poorly understood. This study reports a stress-responsive RNA splicing mechanism for intronic miR400 production, whereby miR400 modulates reactive oxygen species (ROS) accumulation and improves plant tolerance by downregulating its target expression. To monitor the intron splicing events, we used an intronic miR400 splicing-dependent luciferase transgenic line. Luciferase activity was observed to decrease after high cadmium concentration treatment due to the retention of the miR400-containing intron, which inhibited the production of mature miR400. Furthermore, we demonstrated that under Cd treatments, Pentatricopeptide Repeat Protein 1 (PPR1), the target of miR400, acts as a positive regulator by inducing ROS accumulation. Ppr1 mutation affected the Complex III activity in the electron transport chain and RNA editing of the mitochondrial gene ccmB. This study illustrates intron splicing as a key step in intronic miR400 production and highlights the function of intronic miRNAs as a 'signal transducer' in enhancing plant stress tolerance.


Asunto(s)
Arabidopsis , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Intrones/genética , Empalme del ARN/genética , Regulación de la Expresión Génica de las Plantas
13.
Sensors (Basel) ; 23(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37514901

RESUMEN

Ankle joint moment is an important indicator for evaluating the stability of the human body during the sit-to-stand (STS) movement, so a method to analyze ankle joint moment is needed. In this study, a wearable sensor system that could derive surface-electromyography (sEMG) signals and kinematic signals on the lower limbs was developed for non-invasive estimation of ankle muscle dynamics during the STS movement. Based on the established ankle joint musculoskeletal information and sEMG signals, ankle joint moment during the STS movement was calculated. In addition, based on a four-segment STS dynamic model and kinematic signals, ankle joint moment during the STS movement was calculated using the inverse dynamics method. Ten healthy young people participated in the experiment, who wore a self-developed wearable sensor system and performed STS movements as an experimental task. The results showed that there was a high correlation (all R ≥ 0.88) between the results of the two methods for estimating ankle joint moment. The research in this paper can provide theoretical support for the development of an intelligent bionic joint actuator and clinical rehabilitation evaluation.


Asunto(s)
Articulación del Tobillo , Dispositivos Electrónicos Vestibles , Humanos , Adolescente , Articulación del Tobillo/fisiología , Tobillo , Articulación de la Rodilla/fisiología , Movimiento/fisiología , Extremidad Inferior , Músculo Esquelético/fisiología , Fenómenos Biomecánicos
14.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447755

RESUMEN

Gait phase recognition is of great importance in the development of rehabilitation devices. The advantages of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) are combined (LSTM-CNN) in this paper, then a gait phase recognition method based on LSTM-CNN neural network model is proposed. In the LSTM-CNN model, the LSTM layer is used to process temporal sequences and the CNN layer is used to extract features A wireless sensor system including six inertial measurement units (IMU) fixed on the six positions of the lower limbs was developed. The difference in the gait recognition performance of the LSTM-CNN model was estimated using different groups of input data collected by seven different IMU grouping methods. Four phases in a complete gait were considered in this paper including the supporting phase with the right hill strike (SU-RHS), left leg swimming phase (SW-L), the supporting phase with the left hill strike (SU-LHS), and right leg swimming phase (SW-R). The results show that the best performance of the model in gait recognition appeared based on the group of data from all the six IMUs, with the recognition precision and macro-F1 unto 95.03% and 95.29%, respectively. At the same time, the best phase recognition accuracy for SU-RHS and SW-R appeared and up to 96.49% and 95.64%, respectively. The results also showed the best phase recognition accuracy (97.22%) for SW-L was acquired based on the group of data from four IMUs located at the left and right thighs and shanks. Comparably, the best phase recognition accuracy (97.86%) for SU-LHS was acquired based on the group of data from four IMUs located at left and right shanks and feet. Ulteriorly, a novel gait recognition method based on Data Pre-Filtering Long Short-Term Memory and Convolutional Neural Network (DPF-LSTM-CNN) model was proposed and its performance for gait phase recognition was evaluated. The experiment results showed that the recognition accuracy reached 97.21%, which was the highest compared to Deep convolutional neural networks (DCNN) and CNN-LSTM.


Asunto(s)
Redes Neurales de la Computación , Dispositivos Electrónicos Vestibles , Marcha , Memoria a Largo Plazo , Pie
15.
Brain Sci ; 13(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37190531

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim-PSA double-target DBS has been reported. Herein, we aim to propose surgical techniques for Vim-PSA double-target DBS surgery. METHODS: This study enrolled six patients with ET who underwent Vim-PSA double-target electrode implantation from October 2019 to May 2022. The targets were located and adjusted using coordinates and multimodality MRI images. A burr hole was accurately drilled in line with the electrode trajectory under the guidance of a stereotactic frame. Novel approaches were adopted during the electrode implantation process for pneumocephalus reduction, including "arachnoid piamater welding" and "water sealing". Electrophysiological recording was used to identify the implantation sites of the electrodes. A 3D reconstruction model of electrodes and nuclei was established to facilitate programming. RESULTS: The combination of coordinates and multimodality MRI images for target location and adjustment enabled the alignment of Vim and PSA. Postoperative CT scanning showed that the electrode was precisely implanted. Stereotactic guidance facilitated accurate burr hole drilling. "Arachnoid piamater welding" and "water sealing" were efficient in reducing pneumocephalus. Intraoperative electrophysiological verified the efficacy of Vim-PSA double-target DBS surgery. CONCLUSIONS: The methods for target location and adjustment, accurate drilling of the burr hole, reduction in pneumocephalus, and intraoperative electrophysiological verification are key issues in DBS surgery targeting both the Vim and PSA. This study may provide technical support for Vim-PSA DBS, especially for surgeons with less experience in functional neurosurgery.

16.
Am J Transl Res ; 15(4): 2773-2782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193154

RESUMEN

OBJECTIVES: We retrospectively described and analyzed clinical risk factors for in-hospital death due to cerebral venous thrombosis (CVT). METHODS: A total of 172 CVT patients were seen over a 10-year period at three medical centers in China. Demographic and clinical characteristics, neuroimaging, treatment, and outcome data were collected and analyzed. RESULTS: The 28-day in-hospital mortality rate was 4.1%. All seven deceased patients died of transtentorial herniation and were more likely to exhibit coma (42.86% vs. 3.64%, P = 0.003), intracranial hemorrhage (ICH; 85.71% vs. 36.36%, P = 0.013), straight sinus thrombosis (71.43% vs. 26.06%, P = 0.019), and thrombosis of the deep cerebral venous system (DVS; 28.57% vs. 3.64%, P = 0.036) than surviving patients. Multivariate analysis identified coma (odds ratio [OR], 11.17; 95% confidence interval [CI], 1.85-67.46, P = 0.009), ICH (OR, 20.47; 95% CI, 1.11-376.95, P = 0.042), and DVS thrombosis (OR, 36.16; 95% CI, 2.66-491.95, P = 0.007) as independent acute-phase mortality predictors. Thirty-six patients received endovascular treatment. The Glasgow Coma Scale score increased postoperatively compared with preoperatively (P = 0.017). CONCLUSIONS: The main cause of 28-day in-hospital CVT-associated death was a transtentorial hernia, and patients with risk factors such as ICH, coma, and DVS thrombosis were more likely to die. Endovascular treatment may be a safe and effective treatment for severe CVT when conventional management is inadequate.

17.
Exp Ther Med ; 25(5): 236, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37114169

RESUMEN

Chordoid meningioma (CM) is a rare type of intracranial tumor. Intraventricular CM presenting with inflammatory syndrome is also rare. Meningioma is uncommonly accompanied by fever. The present case report documents a 28-year-old male who was admitted to the Affiliated Taian City Central Hospital of Qingdao University (Taian, China) with a 7-day history of unexplained fever and a 3-day history of progressive headache, which was accompanied with blurred vision in the right eye. Laboratory findings revealed an inflammatory condition with increased C-reactive protein levels, elevated erythrocyte sedimentation rate and moderate leukocytosis. MRI also revealed a lesion located in the right lateral ventricle. Subsequently, the tumor was excised through the right transtrigone lateral ventricle route and the tumor was then completely removed. H&E staining revealed characteristic cords of meningeal epithelial cells embedded in a prominent myxoid background, with numerous lymphocytes and plasma cells surrounding the tumor. Immunohistochemical analysis indicated focal positive staining for epithelial membrane antigen and S100, and negative staining for glial fibrillary acidic protein. Following pathological examination, the tumor was identified to be a CM. During the early postoperative course, the clinical symptoms disappeared and the hematological values returned to normal. No evidence of tumor recurrence was observed after 24 months of follow-up. To the best of our knowledge, the present study was the second to report the case of an adult patient with lateral ventricle CM presenting with inflammatory syndrome and it was the first case in an adult male.

18.
J Integr Plant Biol ; 65(8): 1846-1851, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37052306

RESUMEN

Phytohormone abscisic acid (ABA) plays vital roles in stress tolerance, while long-term overactivation of ABA signaling suppresses plant growth and development. However, the braking mechanism of ABA responses is not clear. Protein tyrosine sulfation catalyzed by tyrosylprotein sulfotransferase (TPST) is a critical post-translational modification. Through genetic screening, we identified a tpst mutant in Arabidopsis that was hypersensitive to ABA. In-depth analysis revealed that TPST could interact with and sulfate SnRK2.2/2.3/2.6, which accelerated their degradation and weakened the ABA signaling. Taken together, these findings uncovered a novel mechanism of desensitizing ABA responses via protein sulfation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
19.
Plant J ; 115(2): 434-451, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37025007

RESUMEN

Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors play important roles in plant growth, development and abiotic stress responses. However, how PLATZ influences plant drought tolerance remains poorly understood. The present study showed that PLATZ4 increased drought tolerance in Arabidopsis thaliana by causing stomatal closure. Transcriptional profiling analysis revealed that PLATZ4 affected the expression of a set of genes involved in water and ion transport, antioxidant metabolism, small peptides and abscisic acid (ABA) signaling. Among these genes, the direct binding of PLATZ4 to the A/T-rich sequences in the plasma membrane intrinsic protein 2;8 (PIP2;8) promoter was identified. PIP2;8 consistently reduced drought tolerance in Arabidopsis through inhibiting stomatal closure. PIP2;8 was localized in the plasma membrane, exhibited water channel activity in Xenopus laevis oocytes and acted epistatically to PLATZ4 in regulating the drought stress response in Arabidopsis. PLATZ4 increased ABA sensitivity through upregulating the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4 and ABI5. The transcripts of PLATZ4 were induced to high levels in vegetative seedlings under drought and ABA treatments within 6 and 3 h, respectively. Collectively, these findings reveal that PLATZ4 positively influences plant drought tolerance through regulating the expression of PIP2;8 and genes involved in ABA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Resistencia a la Sequía , Acuaporina 2/genética , Acuaporina 2/metabolismo , Plantas Modificadas Genéticamente/genética , Sequías , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Estomas de Plantas/fisiología
20.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903983

RESUMEN

Glucosinolates are secondary plant metabolites that are part of the plant's defense system against pathogens and pests and are activated via enzymatic degradation by thioglucoside glucohydrolases (myrosinases). Epithiospecifier proteins (ESPs) and nitrile-specifier proteins (NSPs) divert the myrosinase-catalyzed hydrolysis of a given glucosinolate to form epithionitrile and nitrile rather than isothiocyanate. However, the associated gene families have not been explored in Chinese cabbage. We identified three ESP and fifteen NSP genes randomly distributed on six chromosomes in Chinese cabbage. Based on a phylogenetic tree, the ESP and NSP gene family members were divided into four clades and had similar gene structure and motif composition of Brassica rapa epithiospecifier proteins (BrESPs) and B. rapa nitrile-specifier proteins (BrNSPs) in the same clade. We identified seven tandem duplicated events and eight pairs of segmentally duplicated genes. Synteny analysis showed that Chinese cabbage and Arabidopsis thaliana are closely related. We detected the proportion of various glucosinolate hydrolysates in Chinese cabbage and verified the function of BrESPs and BrNSPs in glucosinolate hydrolysis. Furthermore, we used quantitative RT-PCR to analyze the expression of BrESPs and BrNSPs and demonstrated that these genes responded to insect attack. Our findings provide novel insights into BrESPs and BrNSPs that can help further promote the regulation of glucosinolate hydrolysates by ESP and NSP to resist insect attack in Chinese cabbage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA