Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(19): 5920-5928, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708934

RESUMEN

A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.

2.
Adv Mater ; : e2311322, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38299450

RESUMEN

Seawater electrolysis for hydrogen production is a sustainable and economical approach that can mitigate the energy crisis and global warming issues. Although various catalysts/electrodes with excellent activities have been developed for high-efficiency seawater electrolysis, their unsatisfactory durability, especially for anodes, severely impedes their industrial applications. In this review, attention is paid to the factors that affect the stability of anodes and the corresponding strategies for designing catalytic materials to prolong the anode's lifetime. In addition, two important aspects-electrolyte optimization and electrolyzer design-with respect to anode stability improvement are summarized. Furthermore, several methods for rapid stability assessment are proposed for the fast screening of both highly active and stable catalysts/electrodes. Finally, perspectives on future investigations aimed at improving the stability of seawater electrolysis systems are outlined.

3.
Adv Mater ; 36(2): e2306062, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907201

RESUMEN

Although hydrogen gas (H2 ) storage might enable offshore renewable energy to be stored at scale, the commercialization of technology for H2 generation by seawater electrolysis depends upon the development of methods that avoid the severe corrosion of anodes by chloride (Cl- ) ions. Here, it is revealed that the stability of an anode used for seawater splitting can be increased by more than an order of magnitude by loading Ag nanoparticles on the catalyst surface. In experiments, an optimized NiFe-layered double hydroxide (LDH)@Ag electrode displays stable operation at 400 mA cm-2 in alkaline saline electrolyte and seawater for over 5000 and 2500 h, respectively. The impressive long-term durability is more than 20 times that of an unmodified NiFe-LDH anode. Meticulous characterization and simulation reveals that in the presence of an applied electric field, free Cl- ions react with oxidized Ag nanoparticles to form stable AgCl species, giving rise to the formation of a Cl- -free layer near the anode surface. Because of its simplicity and effectiveness, it is anticipated that the proposed strategy to immobilize chloride ions on the surface of an anode has the potential to become a crucial technology to control corrosion during large-scale electrolysis of seawater to produce hydrogen.

4.
Nat Commun ; 14(1): 4822, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563114

RESUMEN

The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl-) is usually more corrosive than simulated seawater (~0.5 M Cl-). Here we elucidate that besides Cl-, Br- in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl- corrodes locally to form narrow-deep pits while Br- etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl- and the lower reaction energy of Br- in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br- causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl- corrosion, designing anti-Br- corrosion anodes is even more crucial for future application of seawater electrolysis.

5.
J Phys Chem Lett ; 13(15): 3409-3416, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35404615

RESUMEN

The lack of characterizations of the adsorption capability toward intermediates during reactions causes difficulties in determining the structural optimization principle of the catalysts for the 2-electron oxygen reduction reaction (2e- ORR). Here, a Tafel-θ method is proposed to evaluate the surface coverage (θ) of important intermediates (*OOH and *OH) on the material surface and further help optimize the catalyst. With the assistance of Tafel-θ analysis, a Zn nanoparticle incorporated oxygen-doped carbon (ZnNP-O-C) catalyst with high 2e- ORR performance (onset of ∼0.57 V and selectivity of >90.4%) in neutral media was achieved. Both the theoretical calculation and characterization results are consistent with the Tafel-θ deduction, revealing that an appropriate ratio of Zn nanoparticles and bridging O can optimize the *OOH adsorption/desorption strength of the adjacent carbon site. This study not only provides an advanced ZnNP-O-C catalyst for electrochemical H2O2 production but also proposes a fast and precise method for the comprehensive assessment of future catalysts.

6.
Angew Chem Int Ed Engl ; 60(42): 22740-22744, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34431193

RESUMEN

Seawater electrolysis to produce hydrogen is a critical technology in marine energy projects; however, the severe anode corrosion caused by the highly concentrated chloride is a key issue should be addressed. In this work, we discover that the addition of sulfate in electrolyte can effectively retard the corrosion of chloride ions to the anode. We take nickel foam as the example and observe that the addition of sulfate can greatly improve the corrosion resistance, resulting in prolonged operating stability. Theoretical simulations and in situ experiments both demonstrate that sulfate anions can be preferentially adsorbed on anode surface to form a negative charge layer, which repulses the chloride ions away from the anode by electrostatic repulsion. The repulsive effect of the adsorbed sulfate is also applicable in highly-active catalyst (nickel iron layered double hydroxide) on nickel foam, which shows ca. 5 times stability of that in traditional electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA