Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ChemSusChem ; : e202400830, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850522

RESUMEN

Magnetite (Fe3O4) has a large theoretical reversible capacity and rich Earth abundance, making it a promising anode material for LIBs. However, it suffers from drastic volume changes during the lithiation process, which lead to poor cycle stability and low-rate performance. Hence, there is an urgent need for a solution to address the issue of volume expansion. Taking inspiration from how glycophyte cells mitigate excessive water uptake/loss through their cell wall to preserve the structural integrity of cells, we designed Fe3O4@PMMA multi-core capsules by microemulsion polymerization as a kind of anode materials, also proposed a new evaluation method for real-time repair effect of the battery capacity. The Fe3O4@PMMA anode shows a high reversible specific capacity (858.0 mAh g-1 at 0.1 C after 300 cycles) and an excellent cycle stability (450.99 mAh g-1 at 0.5 C after 450 cycles). Furthermore, the LiNi0.8Co0.1Mn0.1O2/Fe3O4@PMMA pouch cells exhibit a stable capacity (200.6 mAh) and high-capacity retention rate (95.5 %) after 450 cycles at 0.5 C. Compared to the original battery, the capacity repair rate of this battery is as high as 93.4 %. This kind of bionic capsules provide an innovative solution for improving the electrochemical performance of Fe3O4 anodes to promote their industrial applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124351, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692109

RESUMEN

Epidermal growth factor receptor (EGFR) plays a pivotal role in the initiation and progression of gliomas. In particular, in glioblastoma, EGFR amplification emerges as a catalyst for invasion, proliferation, and resistance to radiotherapy and chemotherapy. Current approaches are not capable of providing rapid diagnostic results of molecular pathology. In this study, we propose a terahertz spectroscopic approach for predicting the EGFR amplification status of gliomas for the first time. A machine learning model was constructed using the terahertz response of the measured glioma tissues, including the absorption coefficient, refractive index, and dielectric loss tangent. The novelty of our model is the integration of three classical base classifiers, i.e., support vector machine, random forest, and extreme gradient boosting. The ensemble learning method combines the advantages of various base classifiers, this model has more generalization ability. The effectiveness of the proposed method was validated by applying an individual test set. The optimal performance of the integrated algorithm was verified with an area under the curve (AUC) maximum of 85.8 %. This signifies a significant stride toward more effective and rapid diagnostic tools for guiding postoperative therapy in gliomas.


Asunto(s)
Receptores ErbB , Glioma , Espectroscopía de Terahertz , Humanos , Glioma/genética , Glioma/patología , Glioma/diagnóstico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Espectroscopía de Terahertz/métodos , Aprendizaje Automático , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Amplificación de Genes , Algoritmos , Máquina de Vectores de Soporte
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 546-555, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660865

RESUMEN

OBJECTIVE: To explore the role of NK cells in allogeneic hematopoietic stem cell micro-transplantation(MST) in the treatment of patients with acute myeloid leukemia(AML). METHODS: Data from 93 AML patients treated with MST at our center from 2013-2018 were retrospectively analyzed. The induction regimen was anthracycline and cytarabine combined with peripheral blood stem cells transplantation mobilization by granulocyte colony stimulating factor (GPBSC), followed by 2-4 courses of intensive treatment with medium to high doses of cytarabine combined with GPBSC after achieving complete remission (CR). The therapeutic effects of one and two courses of MST induction therapy on 42 patients who did not reach CR before transplantation were evaluated. Cox proportional hazards regression analysis was used to analyze the impact of donor NK cell dose and KIR genotype, including KIR ligand mismatch, 2DS1, haplotype, and HLA-Cw ligands on survival prognosis of patients. RESULTS: Forty-two patients received MST induction therapy, and the CR rate was 57.1% after 1 course and 73.7% after 2 courses. Multivariate analysis showed that, medium and high doses of NK cells was significantly associated with improved disease-free survival (DFS) of patients (HR=0.27, P =0.005; HR=0.21, P =0.001), and high doses of NK cells was significantly associated with improved overall survival (OS) of patients (HR=0.15, P =0.000). Donor 2DS1 positive significantly increases OS of patients (HR=0.25, P =0.011). For high-risk patients under 60 years old, patients of the donor-recipient KIR ligand mismatch group had longer DFS compared to the nonmismatch group (P =0.036); donor 2DS1 positive significantly prolonged OS of patients (P =0.009). CONCLUSION: NK cell dose, KIR ligand mismatch and 2DS1 influence the therapeutic effect of MST, improve the survival of AML patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Leucemia Mieloide Aguda , Trasplante Homólogo , Humanos , Leucemia Mieloide Aguda/terapia , Estudios Retrospectivos , Citarabina , Supervivencia sin Enfermedad , Masculino , Femenino , Pronóstico , Inducción de Remisión , Factor Estimulante de Colonias de Granulocitos , Adulto , Persona de Mediana Edad
4.
Neurol Sci ; 45(8): 3711-3721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38632176

RESUMEN

The intestinal microbiota community is a fundamental component of the human body and plays a significant regulatory role in maintaining overall health and in the management disease states.The intestinal microbiota-gut-brain axis represents a vital connection in the cognitive regulation of the central nervous system by the intestinal microbiota.The impact of intestinal microbiota on cognitive function is hypothesized to manifest through both the nervous system and circulatory system. Imbalances in intestinal microbiota during the perioperative period could potentially contribute to perioperative neurocognitive dysfunction. This article concentrates on a review of existing literature to explore the potential influence of intestinal microbiota on brain and cognitive functions via the nervous and circulatory systems.Additionally, it summarizes recent findings on the impact of perioperative intestinal dysbacteriosis on perioperative neurocognitive dysfunction and suggests novel approaches for prevention and treatment of this condition.


Asunto(s)
Eje Cerebro-Intestino , Cognición , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Eje Cerebro-Intestino/fisiología , Cognición/fisiología , Animales , Encéfalo , Disbiosis
5.
ACS Biomater Sci Eng ; 10(3): 1722-1733, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38373308

RESUMEN

Respiratory signals are critical clinical diagnostic criteria for respiratory diseases and health conditions, and respiratory sensors play a crucial role in achieving the desired respiratory monitoring effect. High sensitivity to a single factor can improve the reliability of respiratory monitoring, and maintaining the hygiene of the sensors is also important for daily health monitoring. Herein, we propose a flexible Au-modified anatase titanium dioxide resistive respiratory sensor, which can be mechanically compliantly attached to curved surfaces for respiratory monitoring in different modalities (i.e., respiratory intensity, frequency, and rate). The uniform and preferentially oriented anatase titanium dioxide films gained by the polymer-assisted deposition technique can be fabricated on flexible substrates through a liquid-assisted transferring process. The Au modification can enhance surface plasmon resonance to facilitate the photocatalytic activity of titanium dioxide, and the optimized distribution of Au on the surface of titanium dioxide film made the sensor have an excellent antibacterial effect. The uniquely designed encapsulation can effectively control the contact between the surface of titanium dioxide films and electrodes, allowing the flexible sensor to exhibit fast response time (0.71 s) and recovery time (1.06 s) to respiratory as well as insensitivity or low sensitivity to other factors (i.e., gas composition, humidity, temperature, stress, and strain). This work provided an effective strategy for flexible wearable respiratory sensors and has great potential in daily respiratory monitoring for health management and pandemic control.


Asunto(s)
Antibacterianos , Titanio , Reproducibilidad de los Resultados , Titanio/farmacología , Titanio/química , Antibacterianos/farmacología , Antibacterianos/química
6.
Small ; 20(22): e2312238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319031

RESUMEN

The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real-time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost-effective method to prepare high-quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)-facets. The as-fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2-CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM-1 cm-2), Tyr (0.126 µA µM-1 cm-2), and PA (0.0841 µA µM-1 cm-2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2-CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin-interfaced patch with microfluidic sampling and wireless transmission units for real-time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2-CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.


Asunto(s)
Acetaminofén , Dopamina , Técnicas Electroquímicas , Titanio , Tirosina , Dispositivos Electrónicos Vestibles , Titanio/química , Acetaminofén/análisis , Dopamina/análisis , Tirosina/química , Técnicas Electroquímicas/métodos , Humanos , Electrodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
7.
Bioresour Bioprocess ; 9(1): 90, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38647752

RESUMEN

Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA