RESUMEN
Enzymes are making a significant impact on chemical synthesis. However, the range of chemical products achievable through biocatalysis is still limited compared to the vast array of products possible with organic synthesis. For instance, azoxy products have rarely been synthesized using enzyme catalysts. In this study, we discovered that fungal unspecific peroxygenases are promising catalysts for synthesizing azoxy products from simple aniline starting materials. The catalytic features (up to 48,450 turnovers and a turnover frequency of 6.7 s-1) and substrate transformations (up to 99% conversion with 98% chemoselectivity) highlight the synthetic potential. We propose a mechanism where peroxygenase-derived hydroxylamine and nitroso compounds spontaneously (non-enzymatically) form the desired azoxy products. This work expands the reactivity repertoire of biocatalytic transformations in the underexplored field of azoxy compound formation reactions.
Asunto(s)
Compuestos Azo , Biocatálisis , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Compuestos Nitrosos/química , Compuestos Nitrosos/metabolismo , Hidroxilamina/química , Hidroxilamina/metabolismoRESUMEN
Vitamin D and its analogues play a crucial role in promoting the well-being of both humans and animals. However, the current synthesis of this vital class of nutrients heavily relies on chemical transformations, which suffer from low step- and atom-efficiency due to lengthy synthetic pathways. To enhance sustainability in the chemical industry, it is necessary to develop alternative synthetic processes. Herein, we present a photoenzymatic approach for synthesizing 25-hydroxyvitamin D3 from 7-dehydrocholesterol. In this sequential synthesis, 7-dehydrocholesterol is initially hydroxylated at the C25â C-H bond, resulting in an 85 % conversion to 25-hydroxyl-7-dehydrocholesterol. Subsequently, by employing photo-irradiation using a monochromatic LED ultraviolet light source in a batch reactor and thermal isomerization, 25-hydroxyvitamin D3 is obtained in satisfactory yield. This photoenzymatic process significantly reduces the need for purification steps and allows for gram-scale synthesis of the target product. Our work offers a selective, efficient, and environmentally friendly method for synthesizing 25-OH-vitamin D3, addressing the limitations of current synthetic approaches.
RESUMEN
Enantiomerically pure organoperoxides serve as valuable precursors in organic transformations. Herein, we present the first examples of unspecific peroxygenase catalyzed kinetic resolution of racemic organoperoxides through asymmetric reduction. Through meticulous investigation of the reaction conditions, it is shown that the unspecific peroxygenase from Agrocybe aegerita (AaeUPO) exhibits robust catalytic activity in the kinetic resolution reactions of the model substrate with turnover numbers up to 60000 and turnover frequency of 5.6â s-1. Various aralkyl organoperoxides were successfully resolved by AaeUPO, achieving excellent enantioselectivities (e.g., up to 99 % ee for the (S)-organoperoxide products). Additionally, we screened commercial peroxygenase variants to obtain the organoperoxides with complementary chirality, with one mutant yielding the (R)-products. While unspecific peroxygenases have been extensively demonstrated as a powerful oxidative catalysts, this study highlights their usefulness in catalyzing the reduction of organoperoxides and providing versatile chiral synthons.
RESUMEN
Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.
RESUMEN
Chiral sulfoxides are valuable building blocks in asymmetric synthesis. However, the biocatalytic synthesis of chiral sulfoxides is still challenged by low product titres. Herein, we report the use of peroxygenase as a catalyst for asymmetric sulfoxidation under non-aqueous conditions. Upon covalent immobilisation, the peroxygenase showed stability and activity under neat reaction conditions. A large variety of sulfides was converted into chiral sulfoxides in very high product concentration with moderate to satisfactory optical purity (e. g. 626â mM of (R)-methyl phenyl sulfoxide in approx. 89 % ee in 48â h). Further polishing of the ee value via cascading methionine reductase A (MsrA) gave>99 % ee of the sulfoxide. The robustness of the enzymes and high product titer is superior to the state-of-the-art methodologies. Gram-scale synthesis has been demonstrated. Overall, we demonstrated a practical and facile catalytic method to synthesize chiral sulfoxides.
RESUMEN
Single-cell protein (SCP) production in the methylotrophic yeast Pichia pastoris has the potential to achieve a sustainable protein supply. However, improving the methanol fermentation efficiency and reducing carbon loss has been a long-standing challenge with far-reaching scientific and practical implications. Here, comparative transcriptomics revealed that PAS_0305, a gene directly associated with cell wall thickness under methanol stress, can be used as a target for unlocking cell wall sensors. Intracellular trehalose accumulation confirmed that cell wall sensors were activated after knocking out PAS_0305, which resulted in increased cell wall permeability. Genome-wide signal perturbations were transduced through the HOG module and the CWI pathway, which was confirmed to connected by Pbs2-Mkk. As a consequence of CWI pathway activation, ΔPAS_0305 elicited a rescue response of cell wall remodeling by increasing the ß-1,3-glucan content and decreasing the chitin/mannose content. Remarkably, perturbations in global stress signals led to a fine-tuning of the metabolic network of ΔPAS_0305, resulting in a superior phenotype with highest crude protein and methanol conversion rate of 67.21% and 0.46 gDCW/g. Further genome-scale metabolic models were constructed to validate the experimental results, confirming that unlocking cell wall sensors resulted in maximized flux from methanol towards SCP and effectively addressing the issue of carbon loss in methanol fermentation. This work sheds new light on the potential of manipulating cellular signaling pathways to optimize metabolic networks and achieve exceptional phenotypic characteristics, providing new strategies for constructing versatile cell factories in P. pastoris.
RESUMEN
Non-thermal plasmas are used in various applications to inactivate biological agents or biomolecules. A complex cocktail of reactive species, (vacuum) UV radiation and in some cases exposure to an electric field together cause the detrimental effects. In contrast to this disruptive property of technical plasmas, we have shown previously that it is possible to use non-thermal plasma-generated species such as H2O2 as cosubstrates in biocatalytic reactions. One of the main limitations in plasma-driven biocatalysis is the relatively short enzyme lifetime under plasma-operating conditions. This challenge could be overcome by immobilizing the enzymes on inert carrier materials. Here, we tested whether immobilization is suited to protect proteins from inactivation by plasma. To this end, using a dielectric barrier discharge device (PlasmaDerm), plasma stability was tested for five enzymes immobilized on ten different carrier materials. A comparative analysis of the treatment times needed to reduce enzyme activity of immobilized and free enzyme by 30% showed a maximum increase by a factor of 44. Covalent immobilization on a partly hydrophobic carrier surface proved most effective. We conclude from the study, that immobilization universally protects enzymes under plasma-operating conditions, paving the way for new emerging applications.
Asunto(s)
Enzimas Inmovilizadas , Peróxido de Hidrógeno , Enzimas Inmovilizadas/química , ProteínasRESUMEN
Performing divergent CâH bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic CâH bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated CâC triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 CâH bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the CâC triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent CâH bond functionalization reactions.
Asunto(s)
Catálisis , Oxidación-ReducciónRESUMEN
Peroxygenase from Agrocybe aegerita catalyses the selective hydroxylation of tertiary C-H bonds, whereby tertiary alcohols, diols, ketols, etc., were obtained in good to high regioselectivity and turnover numbers. This method can also be expanded for late-stage functionalization of drug molecules, which represents a streamlined synthetic method to give access to useful compounds.
Asunto(s)
Peróxido de HidrógenoRESUMEN
Amino acids have a multi-billion-dollar market with rising demand, prompting the development of high-performance microbial factories. However, a general screening strategy applicable to all proteinogenic and non-proteinogenic amino acids is still lacking. Modification of the critical structure of tRNA could decrease the aminoacylation level of tRNA catalyzed by aminoacyl-tRNA synthetases. Involved in a two-substrate sequential reaction, amino acids with increased concentration could elevate the reduced aminoacylation rate caused by specific tRNA modification. Here, we developed a selection system for overproducers of specific amino acids using corresponding engineered tRNAs and marker genes. As a proof-of-concept, overproducers of five amino acids such as L-tryptophan were screened out by growth-based and/or fluorescence-activated cell sorting (FACS)-based screening from random mutation libraries of Escherichia coli and Corynebacterium glutamicum, respectively. This study provided a universal strategy that could be applied to screen overproducers of proteinogenic and non-proteinogenic amino acids in amber-stop-codon-recoded or non-recoded hosts.
Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/genética , Aminoácidos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Mutación , Escherichia coli/genética , Escherichia coli/metabolismoRESUMEN
Green light was documented to improve the photostability of fatty acid photodecarboxylase from Chlorella variabilis (CvFAP). Compared to blue light, green light increased the pentadecane yield by 27.6% and improved the residual activity of CvFAP to 5.9-fold after the preillumination. Kinetics and thermodynamics indicated that blue light facilitated a high CvFAP activity.
Asunto(s)
Chlorella , Ácidos Grasos , Luz , CatálisisRESUMEN
The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4â g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4â g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.
Asunto(s)
Ácidos Grasos , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ácidos Grasos/química , Oxidación-Reducción , HidroxilaciónRESUMEN
Halogenated biaryls are vital structural skeletons in bioactive products. In this study, an effective chemoenzymatic halogenation by vanadium-dependent chloroperoxidase from Camponotus inaequalis (CiVCPO) enabled the transformation of freely rotating biaryl bonds to sterically hindered axis. The yields were up to 84 % for the tribrominated biaryl products and up to 65 % when isolated. Furthermore, a one-pot, two-step chemoenzymatic strategy by incorporating transition metal catalyzed Suzuki coupling and the chemoenzymatic halogenation in aqueous phase were described. This strategy demonstrates a simplified one-pot reaction sequence with organometallic and biocatalytic procedures under economical and environmentally beneficial conditions that may inspire further research on synthesis of sterically hindered biaryls.
Asunto(s)
Cloruro Peroxidasa , Cloruro Peroxidasa/metabolismo , Halogenación , BiocatálisisRESUMEN
As one of the fastest-growing carbon emission sources, the aviation sector is severely restricted by carbon emission reduction targets. Sustainable aviation fuel (SAF) has emerged as the most potential alternative to traditional aviation fuel, but harsh production technologies limit its commercialization. Fatty acids photodecarboxylase from Chlorella variabilis NC64A (CvFAP), the latest discovered photoenzyme, provides promising approaches to produce various carbon-neutral biofuels and fine chemicals. This review highlights the state-of-the-art strategies to enhance the application of CvFAP in carbon-neutral biofuel and fine chemicals production, including supplementing alkane as decoy molecular, screening efficient CvFAP variants with directed evolution, constructing genetic strains, employing biphasic catalytic system, and immobilizing CvFAP in an efficient photobioreactor. Furthermore, future opportunities are suggested to enhance photoenzymatic decarboxylation and explore the catalytic mechanism of CvFAP. This review provides a broad context to improve CvFAP catalysis and advance its potential applications.
Asunto(s)
Aviación , Chlorella , Descarboxilación , Biocombustibles , CarbonoRESUMEN
Chiral heterocyclic compounds are needed for important medicinal applications. We report an in silico strategy for the biocatalytic synthesis of chiral N- and O-heterocycles via Baldwin cyclization modes of hydroxy- and amino-substituted epoxides and oxetanes using the limonene epoxide hydrolase from Rhodococcus erythropolis. This enzyme normally catalyzes hydrolysis with formation of vicinal diols. Firstly, the required shutdown of the undesired natural water-mediated ring-opening is achieved by rational mutagenesis of the active site. In silico enzyme design is then continued with generation of the improved mutants. These variants prove to be versatile catalysts for preparing chiral N- and O-heterocycles with up to 99% conversion, and enantiomeric ratios up to 99:1. Crystal structural data and computational modeling reveal that Baldwin-type cyclizations, catalyzed by the reprogrammed enzyme, are enabled by reshaping the active-site environment that directs the distal RHN and HO-substituents to be intramolecular nucleophiles.
Asunto(s)
Epóxido Hidrolasas , Ciclización , Biocatálisis , Epóxido Hidrolasas/metabolismo , Limoneno , Catálisis , EstereoisomerismoRESUMEN
Chiral sulfoxides are versatile synthons and have gained a particular interest in asymmetric synthesis of active pharmaceutical and agrochemical ingredients. Herein, a linear oxidation-reduction bienzymatic cascade to synthesize chiral sulfoxides is reported. The extraordinarily stable and active vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was used to oxidize sulfides into racemic sulfoxides, which were then converted to chiral sulfoxides by highly enantioselective methionine sulfoxide reductase A (MsrA) and B (MsrB) by kinetic resolution, respectively. The combinatorial cascade gave a broad range of structurally diverse sulfoxides with excellent optical purity (>99 %â ee) with complementary chirality. The enzymatic cascade requires no NAD(P)H recycling, representing a facile method for chiral sulfoxide synthesis. Particularly, the envisioned enzymatic cascade not only allows CiVCPO to gain relevance in chiral sulfoxide synthesis, but also provides a powerful approach for (S)-sulfoxide synthesis; the latter case is significantly unexplored for heme-dependent peroxidases and peroxygenases.
Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Oxidación-Reducción , SafrolRESUMEN
Fatty epoxides are unique building blocks in organic transformations and materials production; however, their synthetic methodologies are currently not accessible from renewable fatty acids. Herein, a photoenzymatic decarboxylation of epoxy fatty acids into fatty epoxides was demonstrated using fatty acid photodecarboxylase (FAP) from Chlorella variabilis NC64A (CvFAP). Various fatty epoxides were synthesized in excellent selectivity by wild-type CvFAP. The decarboxylation reaction was also achieved with four new FAP homologues, potentially suggesting a broad availability of the biocatalysts for this challenging decarboxylation reaction. By combining CvFAP with lipase and peroxygenase, a multienzymatic cascade to transform oleic acid and its triglyceride into the corresponding fatty epoxides was established. The obtained fatty epoxides were further converted into rather unusual fatty compounds including diol, alcohol, ether, and chain-shortened carboxylic acids. The present photobiocatalytic synthesis of fatty epoxides from natural starting materials excels by its intrinsic selectivity, mild conditions, and independence of nicotinamide cofactors.
Asunto(s)
Chlorella , Ácidos Grasos , Compuestos Epoxi , Descarboxilación , Ácidos Carboxílicos , Alcoholes , Triglicéridos , Lipasa , Niacinamida , Ácidos OléicosRESUMEN
Porous materials, such as zeolites, have great potential for biomedical applications, thanks to their ability to accommodate positively charged metal-ions and their facile surface functionalization. Although the latter aspect is important to endow the nanoparticles with chemical/colloidal stability and desired biological properties, the possibility for simple ion-exchange enables easy switching between imaging modalities and/or combination with therapy, depending on the envisioned application. In this study, the nanozeolite Linde type L (LTL) with already confirmed magnetic resonance imaging properties, generated by the paramagnetic gadolinium (GdIII) in the inner cavities, was successfully radiolabeled with a positron emission tomography (PET)-tracer zirconium-89 (89Zr). Thereby, exploiting 89Zr-chloride resulted in a slightly higher radiolabeling in the inner cavities compared to the commonly used 89Zr-oxalate, which apparently remained on the surface of LTL. Intravenous injection of PEGylated 89Zr/GdIII-LTL in healthy mice allowed for PET-computed tomography evaluation, revealing initial lung uptake followed by gradual migration of LTL to the liver and spleen. Ex vivo biodistribution confirmed the in vivo stability and integrity of the proposed multimodal probe by demonstrating the original metal/Si ratio being preserved in the organs. These findings reveal beneficial biological behavior of the nanozeolite LTL and hence open the door for follow-up theranostic studies by exploiting the immense variety of metal-based radioisotopes.
RESUMEN
Calcitriol is an active analog of vitamin D3 and has excellent physiological activities in regulating healthy immune function. To synthesize the calcitriol compound, the concept of total synthesis is often adopted, which typically involves multiple steps and results in an overall low yield. Herein, we envisioned an enzymatic approach for the synthesis of calcitriol. Peroxygenase from Agrocybe aegerita (AaeUPO) was used as a catalyst to hydroxylate the C-H bond at the C-25 position of alfacalcidol and yielded the calcitriol in a single step. The enzymatic reaction yielded 80.3% product formation in excellent selectivity, with a turnover number up to 4000. In a semi-preparative scale synthesis, 72% isolated yield was obtained. It was also found that AaeUPO is capable of hydroxylating the C-H bond at the C-1 position of vitamin D3, thereby enabling the calcitriol synthesis directly from vitamin D3.
RESUMEN
Propargylic alcohols and amines are versatile building blocks in organic synthesis. We demonstrate a straightforward enzymatic cascade to synthesize enantiomerically pure propargylic alcohols and amines from readily available racemic starting materials. In the first step, the peroxygenase from Agrocybe aegerita converted the racemic propargylic alcohols into the corresponding ketones, which then were converted into the enantiomerically pure alcohols using the (R)-selective alcohol dehydrogenase from Lactobacillus kefir or the (S)-selective alcohol dehydrogenase from Thermoanaerobacter brokii. Moreover, an enzymatic Mitsunobu-type conversion of the racemic alcohols into enantiomerically enriched propargylic amines using (R)-selective amine transaminase from Aspergillus terreus or (S)-selective amine transaminase from Chromobacterium violaceum was established. The one-pot two-step cascade reaction yielded a broad range of enantioenriched alcohol and amine products in 70-99% yield.