RESUMEN
Background: Hepatoblastoma (HB) is the most common liver malignancy in childhood with poor prognosis and lack of effective therapeutic targets. Single-cell transcriptome sequencing technology has been widely used in the study of malignant tumors, which can understand the tumor microenvironment and tumor heterogeneity. Materials and methods: Two children with HB and a healthy child were selected as the research subjects. Peripheral blood and tumor tissue were collected for single-cell transcriptome sequencing, and the sequencing data were compared and analyzed to describe the differences in the immune microenvironment between children with HB and normal children. Results: There were significant differences in the number and gene expression levels of natural killer cells (NK cells) between children with HB and normal children. More natural killer cells were seen in children with HB compared to normal control. KIR2DL were highly expressed in children with HB. Conclusion: Single-cell transcriptome sequencing of peripheral blood mononuclear cells (PBMC) and tumor tissue from children with HB revealed that KIR2DL was significantly up-regulated in NK cells from children with HB. HLA-C molecules on the surface of tumor cells interact with inhibitory receptor KIR2DL on the surface of NK cells, inhibiting the cytotoxicity of NK cells, resulting in immune escape of tumors. Inhibitors of related immune checkpoints to block the interaction between HLA-C and KIR2DL and enhance the cytotoxicity of NK cells, which may be a new strategy for HB treatment.
RESUMEN
Although combination therapy is the standard of care for relapsed/refractory non-Hodgkin's lymphoma (RR-NHL), combination treatment chosen for an individual patient is empirical, and response rates remain poor in individuals with chemotherapy-resistant disease. Here, we evaluate an experimental-analytic method, quadratic phenotypic optimization platform (QPOP), for prediction of patient-specific drug combination efficacy from a limited quantity of biopsied tumor samples. In this prospective study, we enrolled 71 patients with RR-NHL (39 B cell NHL and 32 NK/T cell NHL) with a median of two prior lines of treatment, at two academic hospitals in Singapore from November 2017 to August 2021. Fresh biopsies underwent ex vivo testing using a panel of 12 drugs with known efficacy against NHL to identify effective single and combination treatments. Individualized QPOP reports were generated for 67 of 75 patient samples, with a median turnaround time of 6 days from sample collection to report generation. Doublet drug combinations containing copanlisib or romidepsin were most effective against B cell NHL and NK/T cell NHL samples, respectively. Off-label QPOP-guided therapy offered at physician discretion in the absence of standard options (n = 17) resulted in five complete responses. Among patients with more than two prior lines of therapy, the rates of progressive disease were lower with QPOP-guided treatments than with conventional chemotherapy. Overall, this study shows that the identification of patient-specific drug combinations through ex vivo analysis was achievable for RR-NHL in a clinically applicable time frame. These data provide the basis for a prospective clinical trial evaluating ex vivo-guided combination therapy in RR-NHL.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma no Hodgkin , Humanos , Estudios Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfoma no Hodgkin/tratamiento farmacológico , Combinación de MedicamentosRESUMEN
Long non-coding RNAs (lncRNAs) are closely associated with tumorigenesis of various malignancies, including glioma. However, the roles of most lncRNAs in glioma remain undiscovered. The present study for the first time explored the roles of NFIA-AS2 in glioma. Based on informatic analyses by online database, lncRNA NFIA-AS2 in glioma tissues was overexpressed and further confirmed in glioma tissues and cells by quantitative real-time PCR (qRT-PCR). High expression of NFIA-AS2 was closely correlated with poor prognosis and might be an independent prognostic factor for PFS and OS. Functionally, silenced NFIA-AS2 could remarkably hinder glioma cell proliferation, migration and invasion, and cause the apoptosis. Mechanistic investigation disclosed that NFIA-AS2 interacted with miR-655-3p and inversely connected with miR-655-3p in glioma. Additionally, miR-655-3p was proved to regulate the expression of ZFX. Final rescue assay demonstrated that ZFX overexpression or miR-655-3p downregulation could neutralize the suppressive effects of NFIA-AS2 knockdown on glioma progression. In conclusion, this study firstly reported that NFIA-AS2 could promote the progression of glioma by targeting the miR-665-3p/ZFX axis, which highlighted that NFIA-AS2 could be a novel biomarker and therapeutic target for glioma patients.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica/genética , Glioma/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Factores de Transcripción NFI/genética , ARN Largo no Codificante/genética , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Glioma/terapia , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Terapia Molecular Dirigida , Factores de Transcripción NFI/metabolismo , Invasividad Neoplásica/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/genéticaRESUMEN
BACKGROUND: Multiple myeloma is an incurable hematological malignancy characterized by a heterogeneous genetic and epigenetic landscape. Although a number of genetic aberrations associated with myeloma pathogenesis, progression and prognosis have been well characterized, the role of many epigenetic aberrations in multiple myeloma remain elusive. G9a, a histone methyltransferase, has been found to promote disease progression, proliferation and metastasis via diverse mechanisms in several cancers. A role for G9a in multiple myeloma, however, has not been previously explored. METHODS: Expression levels of G9a/EHMT2 of multiple myeloma cell lines and control cells Peripheral Blood Mononuclear Cells (PBMCs) were analyzed. Correlation of G9a expression and overall survival of multiple myeloma patients were analyzed using patient sample database. To further study the function of G9a in multiple myeloma, G9a depleted multiple myeloma cells were built by lentiviral transduction, of which proliferation, colony formation assays as well as tumorigenesis were measured. RNA-seq of G9a depleted multiple myeloma with controls were performed to explore the downstream mechanism of G9a regulation in multiple myeloma. RESULTS: G9a is upregulated in a range of multiple myeloma cell lines. G9a expression portends poorer survival outcomes in a cohort of multiple myeloma patients. Depletion of G9a inhibited proliferation and tumorigenesis in multiple myeloma. RelB was significantly downregulated by G9a depletion or small molecule inhibition of G9a/GLP inhibitor UNC0642, inducing transcription of proapoptotic genes Bim and BMF. Rescuing RelB eliminated the inhibition in proliferation and tumorigenesis by G9a depletion. CONCLUSIONS: In this study, we demonstrated that G9a is upregulated in most multiple myeloma cell lines. Furthermore, G9a loss-of-function analysis provided evidence that G9a contributes to multiple myeloma cell survival and proliferation. This study found that G9a interacts with NF-κB pathway as a key regulator of RelB in multiple myeloma and regulates RelB-dependent multiple myeloma survival. G9a therefore is a promising therapeutic target for multiple myeloma.
RESUMEN
OBJECTIVE: To evaluate the association between metabolic syndrome and colorectal cancer. METHODS: A multicenter case-control study was conducted. A total of 1506 cases of colorectal cancer (936 males and 570 females), whose clinical data were complete and aged from 30 to 75, were collected in the Third, First and Second People's Hospital of Jingdezhen between 2000 and 2009. A total of 3354 controls (1766 males and 1588 females) were subjects admitted to the above 3 hospitals as cases with acute non-malignant non-digestive diseases. Multiple logistic regression models were used to analyze the association between metabolic syndrome and its components and colorectal cancer. RESULTS: Forty-eight cases of colorectal cancer (3.2%) and 59 controls (1.8%) were diagnosed as metabolic syndrome. Colorectal cancer risk was increased in cases with metabolic syndrome (OR=1.64, 95% CI:1.14-2.49, P<0.05) and in men with metabolic syndrome (OR=1.92, 95% CI:1.27-3.78, P<0.05), but not in women (P>0.05). As the number of component of metabolic syndrome increased, the risk of colorectal cancer increased in men (P<0.01), but not in women (P>0.05). CONCLUSION: Association between metabolic syndrome and colorectal cancer exists in men, but not in women.