Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Regen ; 13(1): 16, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101982

RESUMEN

Organs-on-chips are microphysiological systems that allow to replicate the key functions of human organs and accelerate the innovation in life sciences including disease modeling, drug development, and precision medicine. However, due to the lack of standards in their definition, structural design, cell source, model construction, and functional validation, a wide range of translational application of organs-on-chips remains a challenging. "Organs-on-chips: Intestine" is the first group standard on human intestine-on-a-chip in China, jointly agreed and released by the experts from the Chinese Society of Biotechnology on 29th April 2024. This standard specifies the scope, terminology, definitions, technical requirements, detection methods, and quality control in building the human intestinal model on a chip. The publication of this group standard will guide the institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of intestine-on-a-chip for translational applications.

2.
ACS Nano ; 18(27): 17749-17763, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38935412

RESUMEN

The rapid development of the SARS-CoV-2 vaccine has been used to prevent the spread of coronavirus 2019 (COVID-19). However, the ongoing and future pandemics caused by SARS-CoV-2 variants and mutations underscore the need for effective vaccines that provide broad-spectrum protection. Here, we developed a nanoparticle vaccine with broad protection against divergent SARS-CoV-2 variants. The corresponding conserved epitopes of the preexisting neutralizing (CePn) antibody were presented on a self-assembling Helicobacter pylori ferritin to generate the CePnF nanoparticle. Intranasal immunization of mice with CePnF nanoparticles induced robust humoral, cellular, and mucosal immune responses and a long-lasting immunity. The CePnF-induced antibodies exhibited cross-reactivity and neutralizing activity against different coronaviruses (CoVs). CePnF vaccination significantly inhibited the replication and pathology of SARS-CoV-2 Delta, WIV04, and Omicron strains in hACE2 transgenic mice and, thus, conferred broad protection against these SARS-CoV-2 variants. Our constructed nanovaccine targeting the conserved epitopes of the preexisting neutralizing antibodies can serve as a promising candidate for a universal SARS-CoV-2 vaccine.


Asunto(s)
Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Epítopos , Nanopartículas , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/inmunología , Ratones , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Nanopartículas/química , Vacunas contra la COVID-19/inmunología , Epítopos/inmunología , Epítopos/química , Humanos , Anticuerpos Antivirales/inmunología , Ratones Transgénicos , Femenino , Ratones Endogámicos BALB C , Nanovacunas
3.
ACS Nano ; 18(21): 13755-13767, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752610

RESUMEN

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.


Asunto(s)
Proteínas de la Cápside , Cápside , Hidrogeles , Nanotubos , Hidrogeles/química , Nanotubos/química , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Cápside/química , Cápside/inmunología , Levivirus/química , Levivirus/inmunología , Levivirus/genética , Animales , Nanoestructuras/química , Ratones , Modelos Moleculares
4.
Biodes Res ; 6: 0032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716149

RESUMEN

Messenger RNA (mRNA) therapeutics hold great potential in the prevention and treatment of many diseases owing to several unique advantages. Delivery of mRNA into target cells is a critical step in mRNA therapy. Efficient and safe delivery systems remain an urgent need. Here, we provide an overview of the current applications of protein nanocages (PNCs), which include different types of PNCs, such as viral capsids, nonviral PNCs, and artificial PNCs, in mRNA delivery. PNCs have the features of uniform size, controllable assembly, modifiable inner and outer surfaces, good biocompatibility, and biodegradability, making them ideal candidates for mRNA delivery. In this review, the properties, loading strategies, and delivery outcomes of each tested PNC are introduced. The challenges faced by PNC-based mRNA carriers are discussed. We also share our perspectives on possible strategies to address these challenges, emphasizing the opportunities brought by emerging technologies and disciplinary convergence.

5.
Nanoscale ; 16(21): 10483, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38764388

RESUMEN

Correction for 'Promoter-regulated in vivo asymmetric self-assembly strategy to synthesize heterogeneous nanoparticles for signal amplification' by Chen Chen et al., Nanoscale, 2022, 14, 16180-16184, https://doi.org/10.1039/D2NR04661J.

6.
Small Methods ; : e2400049, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804235

RESUMEN

Immobilizing DNA with high accessibility at the interface is attractive but challenging. Current methods often involve multiple chemical reactions and derivatives. In this study, an endonuclease, TC1, is introduced to develop a robust strategy for immobilizing DNA with enhanced accessibility. TC1 enables direct immobilization of DNA onto a solid support through self-catalytic DNA covalent coupling and robust solid adsorption capabilities. This method demonstrates high accessibility to target molecules, supported by the improved sensitivity of DNA hybridization and aptamer-target recognition assays. TC1-mediated DNA immobilization is a one-pot reaction that does not require chemical derivatives, making it promising for the development of high-performance DNA materials and technologies.

7.
Biochem Biophys Res Commun ; 709: 149836, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38564937

RESUMEN

Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células HeLa
8.
Biosens Bioelectron ; 257: 116171, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636317

RESUMEN

The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Galio , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Transistores Electrónicos , Virión , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Humanos , COVID-19/diagnóstico , COVID-19/virología , Galio/química , Virión/aislamiento & purificación , Virión/química , Límite de Detección , Compuestos de Aluminio/química , Diseño de Equipo , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Anticuerpos Inmovilizados/química , Anticuerpos Antivirales
9.
Antibiotics (Basel) ; 13(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275323

RESUMEN

Tuberculosis remains a serious challenge to human health worldwide. para-Aminosalicylic acid (PAS) is an important anti-tuberculosis drug, which requires sequential activation by Mycobacterium tuberculosis (M. tuberculosis) dihydropteroate synthase and dihydrofolate synthase (DHFS, FolC). Previous studies showed that loss of function mutations of a thymidylate synthase coding gene thyA caused PAS resistance in M. tuberculosis, but the mechanism is unclear. Here we showed that deleting thyA in M. tuberculosis resulted in increased content of tetrahydrofolate (H4PteGlu) in bacterial cells as they rely on the other thymidylate synthase ThyX to synthesize thymidylate, which produces H4PteGlu during the process. Subsequently, data of in vitro enzymatic activity experiments showed that H4PteGlu hinders PAS activation by competing with hydroxy dihydropteroate (H2PtePAS) for FolC catalysis. Meanwhile, over-expressing folC in ΔthyA strain and a PAS resistant clinical isolate with known thyA mutation partially restored PAS sensitivity, which relieved the competition between H4PteGlu and H2PtePAS. Thus, loss of function mutations in thyA led to increased H4PteGlu content in bacterial cells, which competed with H2PtePAS for catalysis by FolC and hence hindered the activation of PAS, leading to decreased production of hydroxyl dihydrofolate (H2PtePAS-Glu) and finally caused PAS resistance. On the other hand, functional deficiency of thyA in M. tuberculosis pushes the bacterium switch to an unidentified dihydrofolate reductase for H4PteGlu biosynthesis, which might also contribute to the PAS resistance phenotype. Our study revealed how thyA mutations confer PAS resistance in M. tuberculosis and provided new insights into studies on the folate metabolism of the bacterium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA