Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.454
Filtrar
1.
Neural Regen Res ; 20(3): 873-886, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886959

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-ß. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-ß42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-ß42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-ß42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-ß42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-ß42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.

2.
World J Diabetes ; 15(6): 1340-1352, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983805

RESUMEN

BACKGROUND: The mechanism of improvement of type 2 diabetes after duodenal-jejunal bypass (DJB) surgery is not clear. AIM: To study the morphological and functional changes in adipose tissue after DJB and explore the potential mechanisms contributing to postoperative insulin sensitivity improvement of adipose tissue in a diabetic male rat model. METHODS: DJB and sham surgery was performed in a-high-fat-diet/streptozotocin-induced diabetic rat model. All adipose tissue was weighed and observed under microscope. Use inguinal fat to represent subcutaneous adipose tissue (SAT) and mesangial fat to represent visceral adipose tissue. RNA-sequencing was utilized to evaluate gene expression alterations adipocytes. The hematoxylin and eosin staining, reverse transcription-quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay were used to study the changes. Insulin resistance was evaluated by immunofluorescence. RESULTS: After DJB, whole body blood glucose metabolism and insulin sensitivity in adipose tissue improved. Fat cell volume in both visceral adipose tissue (VAT) and SAT increased. Compared to SAT, VAT showed more significantly functional alterations after DJB and KEGG analysis indicated growth hormone (GH) pathway and downstream adiponectin secretion were involved in metabolic regulation. The circulating GH and adiponectin levels and GH receptor and adiponectin levels in VAT increased. Cytological experiment showed that GH stimulated adiponectin secretion and improve insulin sensitivity. CONCLUSION: GH improves insulin resistance in VAT in male diabetic rats after receiving DJB, possibly by increasing adiponectin secretion.

3.
Patterns (N Y) ; 5(6): 100991, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-39005492

RESUMEN

Deep-learning-based classification models are increasingly used for predicting molecular properties in drug development. However, traditional classification models using the Softmax function often give overconfident mispredictions for out-of-distribution samples, highlighting a critical lack of accurate uncertainty estimation. Such limitations can result in substantial costs and should be avoided during drug development. Inspired by advances in evidential deep learning and Posterior Network, we replaced the Softmax function with a normalizing flow to enhance the uncertainty estimation ability of the model in molecular property classification. The proposed strategy was evaluated across diverse scenarios, including simulated experiments based on a synthetic dataset, ADMET predictions, and ligand-based virtual screening. The results demonstrate that compared with the vanilla model, the proposed strategy effectively alleviates the problem of giving overconfident but incorrect predictions. Our findings support the promising application of evidential deep learning in drug development and offer a valuable framework for further research.

4.
Gut ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950910

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.

5.
Immunopharmacol Immunotoxicol ; : 1-13, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951964

RESUMEN

OBJECTIVE: This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS: NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor­ß1 (TGF-ß1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-ß1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS: The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-ß1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/ß-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION: These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-ß1/Smad and non-Smad pathways.

7.
J Bone Miner Metab ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985180

RESUMEN

INTRODUCTION: Despite a large number of observational studies examining the effect of coffee consumption(CC) on bone disorders(BDs), particularly, osteoarthritis(OA), osteoportic fracture(OF), and rheumatoid arthritis(RA), the conclusions are highly controversial. Thus, it is essential to examine the causal association between CC and BDs. MATERIALS AND METHODS: Mendelian randomization (MR) analysis was performed to assess the causal influence of CC on OF, RA, and OA. The main endpoint was the odds ratio (OR) of the inverse variance weighted (IVW) approach. In addition, the weighted median (WM), MR-Egger regressions, MR-pleiotropy residual sum and outlier (MR-PRESSO) and multivariable MR (MVMR) were included in sensitivity analyses. Furthermore, the function of causal SNPs was evaluated by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction networks. RESULTS: Primary MR analysis based on the IVW method suggested that changes in CC alter risk of OF (OR = 1.383, 95%CI 1.079-1.853, P = 0.039), RA(OR: 1.623, 95%CI 1.042-2.527, P = 0.032) and HOA (hip osteoarthritis, OR = 1.536, 95% CI 1.044-2.259, P = 0.021). However, these causal relationships were not robust in sensitivity analyses. In contrast, there is a positive causal relationship between increased CC and the risk of KOA (knee osteoarthritis, OR: 2.094, 95%CI: 1.592-2.754, P = 1.41 × 10-7), as evidenced by the IVW using random effect. A similar effect size was observed across all MR sensitivity analyses, with no evidence of horizontal pleiotropy. CONCLUSION: Based on our MR analysis, increased CC was causally linked to an increase in the risk of KOA. Genetic predictions suggested that CC reduction may have benefits for bone health.

8.
Front Psychol ; 15: 1363778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988383

RESUMEN

Introduction: This study investigated the association between parenting styles and malevolent creativity. Methods: It used latent profile analysis to compare the differences in malevolent creativity between different combinations of parenting styles with an online sample (N = 620). Results: The results of the study suggest that a three-profile solution best fits the data, and the three profiles were labelled positive open parenting, undifferentiated parenting and negative limited parenting. Subsequent analyses revealed that there were significant differences in malevolent creativity performance among the three parenting styles, with participants in the positive open parenting having more malevolent creativity. Those with undifferentiated parenting had the lowest scores. Discussion: The findings provide theoretical guidance for parenting strategies. Future intervention studies on malevolent creativity should also consider the potential impact of parenting style to obtain better results.

9.
Materials (Basel) ; 17(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998272

RESUMEN

Silicon (Si) shows great potential as an anode material for lithium-ion batteries. However, it experiences significant expansion in volume as it undergoes the charging and discharging cycles, presenting challenges for practical implementation. Nanostructured Si has emerged as a viable solution to address these challenges. However, it requires a complex preparation process and high costs. In order to explore the above problems, this study devised an innovative approach to create Si/C composite anodes: micron-porous silicon (p-Si) was synthesized at low cost at a lower silver ion concentration, and then porous silicon-coated carbon (p-Si@C) composites were prepared by compositing nanohollow carbon spheres with porous silicon, which had good electrochemical properties. The initial coulombic efficiency of the composite was 76.51%. After undergoing 250 cycles at a current density of 0.2 A·g-1, the composites exhibited a capacity of 1008.84 mAh·g-1. Even when subjected to a current density of 1 A·g-1, the composites sustained a discharge capacity of 485.93 mAh·g-1 even after completing 1000 cycles. The employment of micron-structured p-Si improves cycling stability, which is primarily due to the porous space it provides. This porous structure helps alleviate the mechanical stress caused by volume expansion and prevents Si particles from detaching from the electrodes. The increased surface area facilitates a longer pathway for lithium-ion transport, thereby encouraging a more even distribution of lithium ions and mitigating the localized expansion of Si particles during cycling. Additionally, when Si particles expand, the hollow carbon nanospheres are capable of absorbing the resulting stress, thus preventing the electrode from cracking. The as-prepared p-Si utilizing metal-assisted chemical etching holds promising prospects as an anode material for lithium-ion batteries.

10.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998318

RESUMEN

Mullite fiber felt is a promising material that may fulfill the demands of advanced flexible external thermal insulation blankets. However, research on the fabrication and performance of mullite fiber felt with high-temperature resistance and thermal stability is still lacking. In this work, mullite fibers were selected as raw materials for the fabrication of mullite fibrous porous materials with a three-dimensional net structure. Said materials' high-temperature resistance and thermal stability were investigated by assessing the effects of various heat treatment temperatures (1100 °C, 1300 °C, and 1500 °C) on the phase composition, microstructure, and performance of their products. When the heat treatment temperature was below 1300 °C, both the phase compositions and microstructures of products exhibited stability. The compressive rebound rate of the product before and after 1100 °C reached 92.9% and 84.5%, respectively. The backside temperature of the as-prepared products was 361.6 °C when tested at 1500 °C for 4000 s. The as-prepared mullite fibrous porous materials demonstrated excellent high-temperature resistance, thermal stability, thermal insulation performance, and compressive rebound capacity, thereby indicating the great potential of the as-prepared mullite fibrous porous materials in the form of mullite fiber felt within advanced flexible external thermal insulation blankets.

11.
Clin Interv Aging ; 19: 1203-1215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974509

RESUMEN

Purpose: This study aims to develop a novel MRI-based paravertebral muscle quality (PVMQ) score for assessing muscle quality and to investigate its correlation with the degree of fat infiltration (DFF) and the vertebral bone quality (VBQ) score of paravertebral muscles. Additionally, the study compares the effectiveness of the PVMQ score and the VBQ score in assessing muscle quality and bone quality. Methods: PVMQ scores were derived from the ratio of paravertebral muscle signal intensity (SI) to L3 cerebrospinal fluid SI on T2-weighted MRI. Image J software assessed paravertebral muscle cross-sectional area (CSA) and DFF. Spearman rank correlation analyses explored associations between PVMQ, VBQ scores, DFF, and T-scores in both genders. Receiver operating characteristic (ROC) curves compared PVMQ and VBQ scores' effectiveness in distinguishing osteopenia/osteoporosis and high paraspinal muscle DFF. Results: In this study of 144 patients (94 females), PVMQ scores were significantly higher in osteoporosis and osteopenia groups compared to normals, with variations observed between genders (P < 0.05). PVMQ showed stronger positive correlation with VBQ scores and DFF in females than males (0.584 vs 0.445, 0.579 vs 0.528; P < 0.01). ROC analysis favored PVMQ over VBQ for low muscle mass in both genders (AUC = 0.767 vs 0.718, 0.793 vs 0.718). VBQ was better for bone mass in males (0.737/0.865 vs 0.691/0.858), whereas PVMQ excelled for females (0.808/0.764 vs 0.721/0.718). Conclusion: The novel PVMQ score provides a reliable assessment of paravertebral muscle quality and shows a strong correlation with VBQ scores and DFF, particularly in females. It outperforms VBQ scores in evaluating muscle mass and offers valuable insights for assessing bone mass in females. These findings underscore the potential of the PVMQ score as a dual-purpose tool for evaluating both muscle and bone health, informing future research and clinical practice.


Asunto(s)
Imagen por Resonancia Magnética , Osteoporosis , Humanos , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Anciano , Osteoporosis/diagnóstico por imagen , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Músculos Paraespinales/diagnóstico por imagen , Curva ROC , Densidad Ósea , Vértebras Lumbares/diagnóstico por imagen
12.
aBIOTECH ; 5(2): 214-218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974869

RESUMEN

Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00153-9.

13.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-38966969

RESUMEN

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Asunto(s)
Espectrometría de Masas , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida con Espectrometría de Masas
14.
Epigenetics Commun ; 4(1): 4, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962689

RESUMEN

Background: Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method: This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results: Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion: Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta. Supplementary Information: The online version contains supplementary material available at 10.1186/s43682-024-00027-7.

15.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38964329

RESUMEN

The entry of coronaviruses is initiated by spike recognition of host cellular receptors, involving proteinaceous and/or glycan receptors. Recently, TMPRSS2 was identified as the proteinaceous receptor for HCoV-HKU1 alongside sialoglycan as a glycan receptor. However, the underlying mechanisms for viral entry remain unknown. Here, we investigated the HCoV-HKU1C spike in the inactive, glycan-activated, and functionally anchored states, revealing that sialoglycan binding induces a conformational change of the NTD and promotes the neighboring RBD of the spike to open for TMPRSS2 recognition, exhibiting a synergistic mechanism for the entry of HCoV-HKU1. The RBD of HCoV-HKU1 features an insertion subdomain that recognizes TMPRSS2 through three previously undiscovered interfaces. Furthermore, structural investigation of HCoV-HKU1A in combination with mutagenesis and binding assays confirms a conserved receptor recognition pattern adopted by HCoV-HKU1. These studies advance our understanding of the complex viral-host interactions during entry, laying the groundwork for developing new therapeutics against coronavirus-associated diseases.

16.
Adv Sci (Weinh) ; : e2401855, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973158

RESUMEN

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.

18.
BMC Anesthesiol ; 24(1): 213, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951786

RESUMEN

PURPOSE: Awake extubation and deep extubation are commonly used anesthesia techniques. In this study, the safety of propofol-assisted deep extubation in the dental treatment of children was assessed. MATERIALS AND METHODS: Children with severe caries who received dental treatment under general anesthesia and deep extubation between January 2017 and June 2023 were included in this study. Data were collected on the following variables: details and time of anesthesia, perioperative vital signs, and incidence of postoperative complications. The incidence of laryngeal spasm (LS) was considered to be the primary observation indicator. RESULTS: The perioperative data obtained from 195 children undergoing dental treatment was reviewed. The median age was 4.2 years (range: 2.3 to 9.6 years), and the average duration of anesthesia was 2.56 h (range 1 to 4.5 h). During intubation with a videoscope, purulent mucus was found in the pharyngeal cavity of seven children (3.6%); LS occurred in five of them (2.6%), and one child developed a fever (T = 37.8 °C) after discharge. Five children (2.6%) experienced emergence agitation (EA) in the recovery room. Also, 13 children (6.7%) experienced epistaxis; 10 had a mild experience and three had a moderate experience. No cases of airway obstruction (AO) and hypoxemia were recorded. The time to open eyes (TOE) was 16.3 ± 7.2 min. The incidence rate of complications was 23/195 (11.8%). Emergency tracheal reintubation was not required. Patients with mild upper respiratory tract infections showed a significantly higher incidence of complications (P < 0.001). CONCLUSIONS: Propofol-assisted deep extubation is a suitable technique that can be used for pediatric patients who exhibited non-cooperation in the outpatient setting. Epistaxis represents the most frequently encountered complication. Preoperative upper respiratory tract infection significantly increases the risk of complications. The occurrence of EA was notably lower than reported in other studies.


Asunto(s)
Extubación Traqueal , Propofol , Humanos , Extubación Traqueal/métodos , Preescolar , Estudios Retrospectivos , Propofol/administración & dosificación , Propofol/efectos adversos , Niño , Masculino , Femenino , Anestésicos Intravenosos , Anestesia General/métodos , Complicaciones Posoperatorias/epidemiología , Laringismo/epidemiología , Intubación Intratraqueal/métodos , Anestesia Dental/métodos
19.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985761

RESUMEN

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas , Transducción de Señal , Fosforilación , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Dominios Proteicos , Mutación
20.
Artículo en Inglés | MEDLINE | ID: mdl-38907819

RESUMEN

There is no doubt that hypoxia and seawater mixture are profoundly affecting the global nitrogen (N) cycle. However, their mechanisms for altering N cycling patterns in shallow coastal groundwater are largely unknown. Here, we examined shallow groundwater N transformation characteristics (dissolved inorganic N and related chemical properties) in the coastal area of east and west Shenzhen City. Results showed that common hypoxic conditions exist in this study area. Ions/Cl- ratios indicated varying levels of saltwater mixture and sulfide formation across this study area. Dissolved oxygen (DO) affects the N cycle process by controlling the conditions of nitrification and the formation of sulfides. Salinity affects nitrification and denitrification processes by physiological effects, while sulfide impacts nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) processes through its own toxicity mechanism and the provision of electron donors for DNRA organisms. Redundancy analysis (RDA) results indicate that the influence magnitude is in the following order: DO > sulfide > salinity. Seawater mixture weakened the nitrification and denitrification of groundwater by changing salinity, while hypoxia and its controlled sulfide formation not only weaken nitrification and denitrification but also stimulated the DNRA process and promotes N regeneration. In this study area, hypoxia is considered to exert greater impacts on N cycling in the coastal shallow groundwater than seawater mixture. These findings greatly improve our understanding of the consequences of hypoxia and seawater mixture on coastal groundwater N cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA