Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844788

RESUMEN

FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 µM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.

2.
Front Plant Sci ; 15: 1360024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745922

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a crucial enzyme in glycolysis, an essential metabolic pathway for carbohydrate metabolism across all living organisms. Recent research indicates that phosphorylating GAPDH exhibits various moonlighting functions, contributing to plant growth and development, autophagy, drought tolerance, salt tolerance, and bacterial/viral diseases resistance. However, in rapeseed (Brassica napus), the role of GAPDHs in plant immune responses to fungal pathogens remains unexplored. In this study, 28 genes encoding GAPDH proteins were revealed in B. napus and classified into three distinct subclasses based on their protein structural and phylogenetic relationships. Whole-genome duplication plays a major role in the evolution of BnaGAPDHs. Synteny analyses revealed orthologous relationships, identifying 23, 26, and 26 BnaGAPDH genes with counterparts in Arabidopsis, Brassica rapa, and Brassica oleracea, respectively. The promoter regions of 12 BnaGAPDHs uncovered a spectrum of responsive elements to biotic and abiotic stresses, indicating their crucial role in plant stress resistance. Transcriptome analysis characterized the expression profiles of different BnaGAPDH genes during Sclerotinia sclerotiorum infection and hormonal treatment. Notably, BnaGAPDH17, BnaGAPDH20, BnaGAPDH21, and BnaGAPDH22 exhibited sensitivity to S. sclerotiorum infection, oxalic acid, hormone signals. Intriguingly, under standard physiological conditions, BnaGAPDH17, BnaGAPDH20, and BnaGAPDH22 are primarily localized in the cytoplasm and plasma membrane, with BnaGAPDH21 also detectable in the nucleus. Furthermore, the nuclear translocation of BnaGAPDH20 was observed under H2O2 treatment and S. sclerotiorum infection. These findings might provide a theoretical foundation for elucidating the functions of phosphorylating GAPDH.

3.
J Asian Nat Prod Res ; : 1-10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753580

RESUMEN

Nine jatrophane diterpenoids were isolated from the whole plant Euphorbia helioscopia, including two new ones, helioscopnins A (1) and B (2). Comprehensive spectroscopic data analysis and ECD calculations elucidated their structures, including absolute configurations. All compounds were evaluated for bioactivity towards autophagic flux by flow cytometry using HM mCherry-GFP-LC3 cells. Compounds 1, 3, 4, 5, 8, and 9 significantly increased autophagic flux.

4.
Nat Nanotechnol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802667

RESUMEN

Improved vaccination requires better delivery of antigens and activation of the natural immune response. Here we report a lipid nanoparticle system with the capacity to carry antigens, including mRNA and proteins, which is formed into a virus-like structure by surface decoration with spike proteins, demonstrating application against SARS-CoV-2 variants. The strategy uses S1 protein from Omicron BA.1 on the surface to deliver mRNA of S1 protein from XBB.1. The virus-like particle enables specific augmentation of mRNAs expressed in human respiratory epithelial cells and macrophages via the interaction the surface S1 protein with ACE2 or DC-SIGN receptors. Activation of macrophages and dendritic cells is demonstrated by the same receptor binding. The combination of protein and mRNA increases the antibody response in BALB/c mice compared with mRNA and protein vaccines alone. Our exploration of the mechanism of this robust immunity suggests it might involve cross-presentation to diverse subsets of dendritic cells ranging from activated innate immune signals to adaptive immune signals.

5.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2197-2209, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812235

RESUMEN

This study aims to explore the potential mechanism of action in the intervention of acute lung injury(ALI) based on the blood entry components of Ganke Granules in rats and in conjunction with network pharmacology, molecular docking, and animal experimental validation. The blood entry components of Ganke Granules in rats were imported into the SwissTargetPrediction platform to predict drug targets, and ALI-related targets were collected from the disease database. Intersections were taken, and protein-protein interaction(PPI) networks were constructed to screen the core targets, followed by Gene Ontology(GO) functional and Kyoto encyclopedia of genes and gnomes(KEGG) pathway enrichment analyses. A "blood entry components-target-pathway-disease" network was constructed, and the core components for disease intervention based on their topological parameters were screened. Molecular docking was used to predict the binding ability of the core components to key targets. The key targets of Ganke Granules in the intervention of ALI were verified by the lipopolysaccharide(LPS)-induced ALI mouse model. Through PPI topological parameter analysis, the top six key targets of STAT3, SRC, HSP90AA1, MAPK3, HRAS, and MAPK1 related to ALI were obtained. GO functional analysis showed that it was mainly related to ERK1 and ERK2 cascade, inflammatory response, and response to LPS. KEGG analysis showed that the main enrichment pathways were MAPK, neutrophil extracellular trap(NET) formation, and so on. Six core components(schizantherin B, schisandrin, besigomsin, harpagoside, isotectorigenin, and trachelanthamine) were filtered out by the "blood entry components-target-pathway-disease" network based on the analysis of topological parameters. Molecular docking results showed that the six core components and Tectoridin with the highest content in the granules had a high affinity with the key targets of MAPK3, SRC, MAPK1, and STAT3. In vivo experiment results showed that compared with the model group, Ganke Granules could effectively alleviate LPS-induced histopathological injury in the lungs of mice and reduce the percentage of inflammatory infiltration. The total protein content, nitric oxide(NO) level, myeloperoxidase(MPO) content, tumor necrosis factor-α(TNF-α), gamma interferon(IFN-γ), interleukin-1ß(IL-1ß), interleukin-6(IL-6), vascular endothelial growth factor(VEGF), and chemokine(C-X-C motif) ligand 1(CXCL1) chemokines in bronchoalveolar lavage fluid(BALF) were decreased, and the expression levels of lymphocyte antigen 6G(Ly6G), citrullinated histones 3(Cit-H3), and phosphorylated proteins SRC, ERK1/2, and STAT3 in lung tissue were significantly down-regulated. In conclusion, Ganke Granules could effectively inhibit the inflammatory response of ALI induced by LPS, protect lung tissue, regulate the release of inflammatory factors, and inhibit neutrophil infiltration and NET formation, and the mechanism of action may be related to inhibiting the activation of SRC/ERK1/2/STAT3 signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Ratas , Masculino , Mapas de Interacción de Proteínas , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Ratas Sprague-Dawley , Humanos
6.
Data Brief ; 54: 110441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708295

RESUMEN

The Diptera insects have important ecological functions. Many plants rely on Diptera insects for pollination, and they play an important role in Co-evolution with plants. We described the detailed characteristics across the complete mitogenome sequences of Desmometopa sabroskyi Brake, 2003 (Diptera: Milichiidae) and an unidentified species of Gampsocera (Diptera: Chloropidae), which are pollinators of orchid species. Sequences were assembled and annotated using the reference genomes of Phyllomyza sp. (OP612805) and Elachiptera insignis (OP612812) available in Genbank. The complete mitogenomes of D. sabroskyi and Gampsocera sp. are 15,841 bp and 16,036 bp in length, respectively. Both mitogenomes include 37 genes consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one noncoding region (NCR). The mitogenome data would better contribute to species identification, taxonomy, phylogenetics, and evolutionary analysis of Diptera insects. .

7.
Artículo en Inglés | MEDLINE | ID: mdl-38607228

RESUMEN

Bisphenol compounds [bisphenol A (BPA), etc.] are one class of the most important and widespread pollutants in food and environment, which pose severe endocrine disrupting effect, reproductive toxicity, immunotoxicity, and metabolic toxicity on humans and animals. Simultaneous rapid determination of BPA and its analogues (bisphenol S, bisphenol AF, etc.) with extraordinary potential resolution and sensitivity is of great significance but still extremely challenging. Herein, a series of single-atom catalysts (SACs) were synthesized by anchoring different metal atoms (Mg, Co, Ni, and Cu) on N-doped carbon materials and used as sensing materials for simultaneous detection of bisphenols with similar chemical structures. The Mg-based SAC enables the potential discrimination and simultaneous rapid detection of multiple bisphenols, showing outstanding analytical performances, outperforming all other SACs and traditional electrode materials. Our experiments and density functional theory calculations show that pyrrolic N serves as the adsorption site for the adsorption of bisphenols and the Mg atom serves as the active site for the electrocatalytic oxidation of bisphenols, which play a synergistic role as dual active centers in improving the sensing performance. The results of this work may pave the way for the rational design of SACs as advanced sensing and catalytic materials.

8.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543427

RESUMEN

Using alkali pretreatment can effectively remove residual variable-valence metals from non-metallic powder (WPCBP) in waste printed circuit boards. However, substantial amounts of waste lye are generated, which causes secondary pollution. On this basis, this study innovatively utilized waste alkali lye to prepare nano-magnesium hydroxide. When the dispersant polyethylene glycol 6000 was used at a dosage of 3 wt.% of the theoretical yield of magnesium hydroxide, the synthesized nano-magnesium hydroxide exhibited well-defined crystallinity, good thermal stability and uniform particle size distribution, with a median diameter of 197 nm. Furthermore, the in situ method was selected to prepare WPCBP/Mg(OH)2 hybrid filler (MW) and the combustion behavior, thermal and mechanical properties of PP blends filled with MW were evaluated. The combustion behavior of the PP/MW blends increased with the increasing hybrid ratio of Mg(OH)2, and the MW hybrid filler reinforced PP blends showed better thermal and mechanical properties compared to the PP/WPCBP blends. Furthermore, the dynamic mechanical properties of the PP/MW blends were also increased due to the improved interfacial adhesion between the MW fillers and PP matrix. This method demonstrated high economic and environmental value, providing a new direction for the high value-added utilization of WPCBP.

9.
Bone Joint Res ; 13(3): 110-123, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447596

RESUMEN

Aims: Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods: In this study, interleukin-1ß (IL-1ß) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results: The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1ß and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1ß and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion: Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA.

10.
Mol Neurobiol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536604

RESUMEN

Cognitive impairment (CI) is a common complication of the non-motor symptoms in Parkinson's disease (PD), including PD with mild cognitive impairment (PD-MCI) and PD dementia. Recent studies reported the oral dysbiosis in PD and CI, respectively. Porphyromonas gingivalis (P. gingivalis), a pathogen of oral dysbiosis, plays an important role in PD, whose lysine-gingipain (Kgp) could lead to AD-type pathologies. No previous study investigated the composition of oral microbiota and role of P. gingivalis in PD-MCI. This study aimed to investigate the differences of oral microbiota composition, P. gingivalis copy number, and Kgp genotypes among PD-MCI, PD with normal cognition (PD-NC) and periodontal status-matched control (PC) groups. The oral bacteria composition, the copy number of P. gingivalis, and the Kgp genotypes in gingival crevicular fluid from PD-MCI, PD-NC, and PC were analyzed using 16S ribosomal RNA sequencing, quantitative real-time PCR, and MseI restriction. We found that the structures of oral microbiota in PD-MCI group were significantly different compared to that in PD-NC and PC group. The relative abundances of Prevotella, Lactobacillus, Megasphaera, Atopobium, and Howardella were negatively correlated with cognitive score. Moreover, there was a significant difference of Kgp genotypes among the three groups. The predominant Kgp genotypes of P. gingivalis in the PD-MCI group were primarily Kgp II, whereas in the PD-NC group, it was mainly Kgp I. The Kgp II correlated with lower MMSE and MoCA scores, which suggested that Kgp genotypes II is related to cognitive impairment in PD.

11.
Int J Biol Macromol ; 265(Pt 2): 131115, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522691

RESUMEN

A cellulose-reinforced eutectogel was constructed by deep eutectic solvent (DES) and cotton linter cellulose. Cellulose was dispersed in the ternary DES consisting of acrylic acid, choline chloride and AlCl3·6H2O. The photoinitiator was then introduced into the system to in situ polymerize acrylic acid monomer to form transparent and ionic conductive eutectogels while keeping all the DES. The crosslinks formed by Al3+ induced ionic bonds and reversible links formed by hydrogen bonds give the eutectogels high stretchability (3200 ± 200 % tensile strain), self-adhesive (52.1 kPa to glass), self-healing and good mechanical strength (670 kPa). The eutectogels were assembled into sensors and epidermal patch electrodes that demonstrated high quality human motion sensing and physiological signal detection (electrocardiogram and electromyography). This work provides a facile way to design flexible electronics for sensing.


Asunto(s)
Acrilatos , Celulosa , Humanos , Colina , Conductividad Eléctrica
12.
Patient Prefer Adherence ; 18: 591-606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463399

RESUMEN

Purpose: Studies had reported some influencing factors of health behavior among patients with coronary heart disease(CHD) after percutaneous coronary intervention(PCI). However, considering that human perceptions are complex, unrestricted and dynamically changing. A longitudinal qualitative study was conducted to explore the determinants of health-related behaviors of patients after PCI and dynamic changes of these determinants at the 1st, 3rd, and 6th months. Patients and Methods: Using purposive sampling, 18 patients undergoing PCI were interviewed. The conventional content analysis method was used to identify categories and subcategories. Semi-structured, face-to-face or telephone in-depth interviews were conducted at the cardiology unit of a tertiary referral hospital in Yunnan Province, China from March 2022 to January 2023. Results: Seven categories with some subcategories were constructed from the data, categorized into three domains. Firstly, individual factors include (i) Personal coping with healthy lifestyle requirements (tried but failed; I can do it), (ii) individual perception and feeling toward disease (knowing about the disease; belief of cure; fears of relapse), and (iii) personal benefits (improved health; meaning of life). Secondly, social factors include (i) social facilitators (family resources; healthcare support), (ii) social barriers (inconvenient medical care service; conflicting information). Finally, cultural factors include (i) way of living (dietary habits; key roles of yan (cigarette) and jiu (alcohol) in Chinese society), (ii) way of thinking (fatalism and Confucian familism). Conclusion: The determinants of health-related behaviors of patients after PCI are multifaceted and dynamic. Different interventions should be formulated to promote patients' adherence to health behaviors. Moreover, priority should be given to the impact of traditional Chinese philosophy on the health behaviors of patients after PCI, and the health promotion program for these patients should be culturally sensitive. In addition, future research should further explore the determinants of health behaviors among diverse ethnic minorities after PCI, which has not been fully inquired in this study.

13.
ACS Biomater Sci Eng ; 10(3): 1379-1392, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38373297

RESUMEN

Cancer metastasis and invasion are closely related to tumor cell immunosuppression and intracellular hypoxia. Activation of immunogenicity and intracellular oxygenation are effective strategies for cancer treatment. In this study, multifunctional nanomicelle hyaluronic acid and cinnamaldehyde is self-assembled into nanomicelles (HPCNPs) were constructed for immunotherapy and tumor cell oxygenation. The Schiff base was constructed of HPCNPs with pyropheophorbide a-Cu (PPa-Cu). HPCNPs are concentrated in tumor sites under the guidance of CD44 proteins, and under the stimulation of tumor environment (weakly acidic), the Schiff base is destroyed to release free PPa. HPCNPs with photodynamic therapeutic functions and chemokinetic therapeutic functions produce a large number of reactive oxygen species (1O2 and •OH) under exogenous (laser) and endogenous (H2O2) stimulations, causing cell damage, and then inducing immunogenic cell death (ICD). ICD markers (CRT and ATP) and immunoactivity markers (IL-2 and CD8) were characterized by immunofluorescence. Downregulation of Arg1 protein proved that the tumor microenvironment changed from immunosuppressive type (M2) to antitumor type (M1). The oxidation of glutathione by HPCNP cascades to amplify the concentration of reactive oxygen species. In situ oxygenation by HPCNPs based on a Fenton-like reaction improves the intracellular oxygen level. In vitro and in vivo experiments demonstrated that HPCNPs combined with an immune checkpoint blocker (α-PD-L1) effectively ablated primary tumors, effectively inhibited the growth of distal tumors, and increased the oxygen level in tumor cells.


Asunto(s)
Ácido Hialurónico , Peróxido de Hidrógeno , Ácido Hialurónico/farmacología , Especies Reactivas de Oxígeno , Bases de Schiff , Oxígeno , Concentración de Iones de Hidrógeno
14.
Langmuir ; 40(10): 5288-5296, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38417256

RESUMEN

A kind of ionic conductive gel (also named eutectogel) is developed from an inorganic salt (ZnCl2)-based deep eutectic solvent (DES). The ternary DES consists of ZnCl2, acrylic acid, and water, and cotton linter cellulose is introduced into the DES system to tailor its mechanical and conductive properties. Enabled by the extensive hydrogen bonds and ion-dipole interactions, the obtained eutectogel displays superior ionic conductivity (0.33 S/m), high stretchability (up to 2050%), large tensile strength (1.82 MPa), and wide temperature tolerance (-40 to 60 °C). In particular, the water-induced coordination interactions can tune the strength of hydrogen/ionic bonds in the eutectogels, imparting them with appealing humidity sensing ability in complex and extreme conditions.

16.
iScience ; 27(2): 108888, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303700

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2023.107647.].

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167058, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331112

RESUMEN

INTRODUCTION: Excess iron contributes to Hemophilic Arthropathy (HA) development. Divalent metal transporter 1 (DMT1) delivers iron into the cytoplasm, thus regulating iron homeostasis. OBJECTIVES: We aimed to investigate whether DMT1-mediated iron homeostasis is involved in bleeding-induced cartilage degeneration and the molecular mechanisms underlying iron overload-induced chondrocyte damage. METHODS: This study established an in vivo HA model by puncturing knee joints of coagulation factor VIII gene knockout mice with a needle, and mimicked iron overload conditions in vitro by treatment of Ferric ammonium citrate (FAC). RESULTS: We demonstrated that blood exposure caused iron overload and cartilage degeneration, as well as elevated expression of DMT1. Furthermore, DMT1 silencing alleviated blood-induced iron overload and cartilage degeneration. In hemophilic mice, articular cartilage degeneration was also suppressed by intro-articularly injection of DMT1 adeno-associated virus 9 (AAV9). Mechanistically, RNA-sequencing analysis indicated the association between iron overload and cGAS-STING pathway. Further, iron overload triggered mtDNA-cGAS-STING pathway activation, which could be effectively mitigated by DMT1 silencing. Additionally, we discovered that RU.521, a potent Cyclic GMP-AMP Synthase (cGAS) inhibitor, successfully suppressed the downward cascades of cGAS-STING, thereby protecting against chondrocyte damage. CONCLUSION: Taken together, DMT1-mediated iron overload promotes chondrocyte damage and murine HA development, and targeted DMT1 may provide therapeutic and preventive approaches in HA.


Asunto(s)
Sobrecarga de Hierro , Artropatías , Animales , Ratones , Cartílago , ADN Mitocondrial/genética , Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Ratones Noqueados , Nucleotidiltransferasas/metabolismo
18.
Clin Transl Oncol ; 26(6): 1459-1466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329609

RESUMEN

OBJECTIVE: The objective of this study was to investigate the impact of Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline) on cardiac function in osteosarcoma patients and analyze the factors influencing this effect. METHODS: A retrospective study was conducted on 165 osteosarcoma patients admitted to our hospital from January 2020 to December 2022. Based on the chemotherapy regimen, the patients were divided into two groups: the control group (n = 62) treated with Cisplatin and cyclophosphamide, and the observation group (n = 103) treated with Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline). The general records of both groups were analyzed, and left ventricular ejection fraction (LVEF) was evaluated through echocardiography before and after chemotherapy. Blood cTnT and CK-MB levels were measured using immunoluminescence. The incidence of adverse reactions during chemotherapy was also analyzed. Univariate analysis was performed to identify patients with cardiotoxic events, and multiple logistic regression analysis was done to study the effects of Doxorubicin, Epirubicin, Liposomal Doxorubicin, and their dosages on cardiotoxicity in patients. RESULTS: The general records between the two groups showed no significant differences (P > 0.05). However, at the fourth cycle of chemotherapy, the observation group exhibited a lower LVEF (P < 0.05), and a higher percentage of LVEF decrease compared to the control group (P < 0.05). Moreover, the observation group had higher levels of blood cTnT and CK-MB (P < 0.05). The incidence of cardiotoxicity in the observation group was also higher (P < 0.05), but no significant differences were seen in other adverse reaction rates (P > 0.05). The occurrence of cardiotoxicity was found to be related to the choice and dosage of chemotherapy drugs (P < 0.05), but not significantly correlated with age, sex, and mediastinal irradiation in patients (P > 0.05). Furthermore, the use of Doxorubicin, Epirubicin, and Liposomal Doxorubicin in chemotherapy, as well as an increase in their dosages, was found to elevate the risk of cardiotoxicity in osteosarcoma patients (P < 0.05). However, age, sex, and mediastinal radiation were not significantly associated with cardiotoxicity in osteosarcoma patients (P > 0.05). CONCLUSION: We demonstrated that Doxorubicin, Epirubicin, Liposomal Doxorubicin (Anthracycline), and other drugs adversely affected cardiac function in osteosarcoma patients, increasing the risk of cardiac toxicity. Therefore, close monitoring of cardiac function during chemotherapy is crucial, and timely adjustments to the chemotherapy regimen are necessary. In addition, rational control of drug selection and dosage is essential to minimize the occurrence of cardiac toxicity.


Asunto(s)
Neoplasias Óseas , Cardiotoxicidad , Doxorrubicina , Epirrubicina , Osteosarcoma , Humanos , Osteosarcoma/tratamiento farmacológico , Epirrubicina/efectos adversos , Epirrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Doxorrubicina/análogos & derivados , Femenino , Masculino , Estudios Retrospectivos , Adulto , Adulto Joven , Neoplasias Óseas/tratamiento farmacológico , Cardiotoxicidad/etiología , Adolescente , Volumen Sistólico/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Función Ventricular Izquierda/efectos de los fármacos , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/uso terapéutico , Ecocardiografía , Troponina T/sangre , Forma MB de la Creatina-Quinasa/sangre , Ciclofosfamida/efectos adversos , Ciclofosfamida/administración & dosificación , Niño , Cisplatino/efectos adversos , Cisplatino/administración & dosificación , Polietilenglicoles
19.
J Biophotonics ; 17(4): e202300417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221649

RESUMEN

Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion that has the potential to progress to invasive pancreatic cancer, and early and rapid detection may offer patients a chance for treatment before the development of invasive carcinoma. Therefore, the identification of PanIN holds significant clinical importance. In this study, we first used multiphoton microscopy (MPM) combining two-photon excitation fluorescence and second-harmonic generation imaging to label-free detect PanIN and attempted to differentiate between normal pancreatic ducts and different grades of PanIN. Then, we also developed an automatic image processing strategy to extract eight morphological features of collagen fibers from MPM images to quantify the changes in collagen fibers surrounding the ducts. Experimental results demonstrate that the combination of MPM and quantitative information can accurately identify normal pancreatic ducts and different grades of PanIN. This study may contribute to the rapid diagnosis of pancreatic diseases and may lay the foundation for further clinical application of MPM.


Asunto(s)
Microscopía , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Páncreas , Colágeno , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
20.
Neuro Endocrinol Lett ; 45(1): 22-30, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295425

RESUMEN

BACKGROUND: Cortisol is a steroid hormone secreted mainly by the adrenal cortex and is associated with chronic stress levels in the body. Hair cortisol concentration (HCC) is a reliable index to assess human stress levels. So far, no study has reported whether COVID-19 vaccination is associated with the changes of HCC. METHODS: Hair samples were collected from 114 college students at Hangzhou City University and Zhejiang University. Among them, 57 cases completed COVID-19 vaccination and others did not. HCCs were measured by the chemiluminescence immunoassay (CLIA). The psychological stress levels were evaluated using the Chinese College Student Psychological Stress Scale (CCSPSS). General information and adverse reactions of the subjects were collected by questionnaire. RESULTS: Compared with the vaccinated college students, the unvaccinated students had higher HCC levels in both A and B hair segments respectively corresponding older or six weeks before and newer or six weeks after vaccination (p < 0.05), reflecting higher stress levels. Besides, the vaccinated group had significantly higher HCCs in segment B compared with segment A (p < 0.05). Further analysis showed that the value of ΔHCC (HCCseg.B - HCCseg.A) of the vaccinated group was strongly associated with COVID-19 vaccination (p < 0.05), but was not associated with age, gender, BMI, CCSPSS score, hormone use, exercise frequency, hair washing frequency, or hair treatment. Finally, the number of self-reported systemic adverse reactions in the vaccinated group was associated with ΔHCC (p < 0.01). CONCLUSION: The COVID-19 vaccination had an impact on the value of HCC, which might be linked to the occurrence of systemic adverse effects following vaccinations.


Asunto(s)
COVID-19 , Hidrocortisona , Humanos , Hidrocortisona/análisis , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Estrés Psicológico/psicología , Cabello , Vacunación/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA