Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29156, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644822

RESUMEN

Background: The occurrence and development of sepsis are related to the excessive production of oxygen free radicals and the weakened natural clearance mechanism. Further dependable evidence is required to clarify the effectiveness of antioxidant therapy, especially its impact on short-term mortality. Objectives: The purpose of this systematic review and meta-analysis was to evaluate the effect of common antioxidant therapy on short-term mortality in patients with sepsis. Methods: According to PRISMA guidelines, a systematic literature search on antioxidants in adults sepsis patients was performed on PubMed/Medline, Embase, and the Cochrane Library from the establishment of the database to November 2023. Antioxidant supplements can be a single-drug or multi-drug combination: HAT (hydrocortisone, ascorbic acid, and thiamine), ascorbic acid, thiamine, N-acetylcysteine and selenium. The primary outcome was the effect of antioxidant treatment on short-term mortality, which included 28-day mortality, in-hospital mortality, intensive care unit mortality, and 30-day mortality. Subgroup analyses of short-term mortality were used to reduce statistical heterogeneity and publication bias. Results: Sixty studies of 130,986 sepsis patients fulfilled the predefined criteria and were quantified and meta-analyzed. Antioxidant therapy reduces the risk of short-term death in sepsis patients by multivariate meta-analysis of current data, including a reduction of in-hospital mortality (OR = 0.81, 95% CI 0.67 to 0.99; P = 0.040) and 28-day mortality (OR = 0.81, 95% CI 0.69 to 0.95]; P = 0.008). Particularly in subgroup analyses, ascorbic acid treatment can reduce in-hospital mortality (OR = 0.66, 95% CI 0.90 to 0.98; P = 0.006) and 28-day mortality (OR = 0.43, 95% CI 0.24 to 0.75; P = 0.003). However, the meta-analysis of RCTs found that antioxidant therapy drugs, especially ascorbic acid, did substantially reduce short-term mortality(OR = 0.78, 95% CI 0.62 to 0.98; P = 0.030; OR = 0.57, 95% CI 0.36 to 0.91; P = 0.020). Conclusions: According to current data of RCTs, antioxidant therapy, especially ascorbic acid, has a trend of improving short-term mortality in patients with sepsis, but the evidence remains to be further demonstrated.

2.
Front Immunol ; 13: 1028785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532072

RESUMEN

Background: Sepsis is a life-threatening disease associated with immunosuppression. Immunosuppression could ultimately increase sepsis mortality. This study aimed to identify the prognostic biomarkers related to immunity in sepsis. Methods: Public datasets of sepsis downloaded from the Gene Expression Omnibus (GEO) database were divided into the discovery cohort and the first validation cohort. We used R software to screen differentially expressed genes (DEGs) and analyzed DEGs' functional enrichment in the discovery dataset. Immune-related genes (IRGs) were filtered from the GeneCards website. A Lasso regression model was used to screen candidate prognostic genes from the intersection of DEGs and IRGs. Then, the candidate prognostic genes with significant differences were identified as prognostic genes in the first validation cohort. We further validated the expression of the prognostic genes in the second validation cohort of 81 septic patients recruited from our hospital. In addition, we used four immune infiltration methods (MCP-counter, ssGSEA, ImmuCellAI, and CIBERSORT) to analyze immune cell composition in sepsis. We also explored the correlation between the prognostic biomarker and immune cells. Results: First, 140 genes were identified as prognostic-related immune genes from the intersection of DEGs and IRGs. We screened 18 candidate prognostic genes in the discovery cohort with the lasso regression model. Second, in the first validation cohort, we identified 4 genes (CFHR2, FCGR2C, GFI1, and TICAM1) as prognostic immune genes. Subsequently, we found that FCGR2C was the only gene differentially expressed between survivors and non-survivors in 81 septic patients. In the discovery and first validation cohorts, the AUC values of FCGR2C were 0.73 and 0.67, respectively. FCGR2C (AUC=0.84) had more value than SOFA (AUC=0.80) and APACHE II (AUC=0.69) in evaluating the prognosis of septic patients in our recruitment cohort. Moreover, FCGR2C may be closely related to many immune cells and functions, such as B cells, NK cells, neutrophils, cytolytic activity, and inflammatory promotion. Finally, enrichment analysis showed that FCGR2C was enriched in the phagosome signaling pathway. Conclusion: FCGR2C could be an immune biomarker associated with prognosis, which may be a new direction of immunotherapy to reduce sepsis mortality.


Asunto(s)
Sepsis , Humanos , Sepsis/diagnóstico , Sepsis/genética , APACHE , Terapia de Inmunosupresión , Neutrófilos , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA