Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Nat Commun ; 15(1): 6650, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103370

RESUMEN

The oxygen reduction reaction (ORR) catalyzed by efficient and economical catalysts is critical for sustainable energy devices. Although the newly-emerging atomically dispersed platinum catalysts are highly attractive for maximizing atomic utilization, their catalytic selectivity and durability are severely limited by the inflexible valence transformation between Pt and supports. Here, we present a structure by anchoring Pt atoms onto valence-adjustable CuOx/Cu hybrid nanoparticle supports (Pt1-CuOx/Cu), in which the high-valence Cu (+2) in CuOx combined with zero-valent Cu (0) serves as a wide-range valence electron reservoir (0‒2e) to dynamically adjust the Pt 5d valence states during the ORR. In situ spectroscopic characterizations demonstrate that the dynamic evolution of the Pt 5d valence electron configurations could optimize the adsorption strength of *OOH intermediate and further accelerate the dissociation of O = O bonds for the four-electron ORR. As a result, the Pt1-CuOx/Cu catalysts deliver superior ORR performance with a significantly enhanced four-electron selectivity of over 97% and long-term durability.

2.
Carbohydr Polym ; 343: 122460, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174133

RESUMEN

Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.


Asunto(s)
Lignina , Nanoestructuras , Lignina/química , Nanoestructuras/química , Celulosa/química , Antibacterianos/química , Antibacterianos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Antioxidantes/química , Antioxidantes/farmacología , Tamaño de la Partícula
3.
BMC Public Health ; 24(1): 2240, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154181

RESUMEN

BACKGROUND: Epilepsy is a major global health challenge, affecting approximately 50 million people across the globe and resulting in significant economic impacts on individuals and society. Oxidative stress is implicated in the pathogenesis of epilepsy, highlighting the potential of antioxidant-rich dietary patterns in offering preventive and protective benefits by mitigating oxidative stress. The Composite Dietary Antioxidant Index (CDAI) provides a measure for assessing dietary antioxidant intake, yet its link to epilepsy remains unexplored. METHODS: Our analysis utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 2013 to 2018, including 20,180 screened participants. Weighted logistic regression models were employed to examine the association between the CDAI and epilepsy prevalence. Non-linear associations were explored through restricted cubic splines (RCS), and the relationships between individual antioxidant components within the CDAI and epilepsy were also assessed. RESULTS: After adjusting for potential confounders, a negative association between the CDAI and epilepsy was suggested (OR = 0.991; p = 0.087, 95% CI [0.819,1.014]). Stratification of CDAI into quartiles revealed a significantly reduced risk of epilepsy in higher CDAI quartiles (Q3 and Q4) compared to the lowest quartile (Q1) (Q3: OR = 0.419; p = 0.030, 95% CI [0.192, 0.914]; Q4: OR = 0.421; p = 0.004, 95% CI [0.239, 0.742]), with a significant trend observed across quartiles (p for trend = 0.013). RCS analysis suggested a nonlinear association between CDAI levels and epilepsy (non-linear p = 0.049), which, however, was not statistically significant after full adjustment (non-linear p = 0.103). Additionally, significant negative correlations with epilepsy were observed for vitamin A and zinc (Vitamin A: OR = 0.999; p = 0.012, 95% CI [0.998, 1.000]; Zinc: OR = 0.931; p = 0.042, 95% CI [0.869, 0.997]). CONCLUSIONS: Our research indicates a correlation where higher CDAI levels correspond to a reduced risk of epilepsy. Therefore, embracing a diet rich in antioxidants could be beneficial in preventing epilepsy. This finding holds considerable potential for shaping future strategies in both epilepsy prevention and treatment.


Asunto(s)
Antioxidantes , Dieta , Epilepsia , Encuestas Nutricionales , Humanos , Epilepsia/epidemiología , Estudios Transversales , Antioxidantes/análisis , Masculino , Femenino , Adulto , Estados Unidos/epidemiología , Persona de Mediana Edad , Dieta/estadística & datos numéricos , Adulto Joven , Anciano , Adolescente , Prevalencia
4.
J Adv Res ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137864

RESUMEN

INTRODUCTION: Breast cancer, a heterogeneous disease, is influenced by multiple genetic and epigenetic factors. The majority of prognostic models for breast cancer focus merely on the main effects of predictors, disregarding the crucial impacts of gene-gene interactions on prognosis. OBJECTIVES: Using DNA methylation data derived from nine independent breast cancer cohorts, we developed an independently validated prognostic prediction model of breast cancer incorporating epigenetic biomarkers with main effects and gene-gene interactions (ARTEMIS) with an innovative 3-D modeling strategy. ARTEMIS was evaluated for discrimination ability using area under the receiver operating characteristics curve (AUC), and calibration using expected and observed (E/O) ratio. Additionally, we conducted decision curve analysis to evaluate its clinical efficacy by net benefit (NB) and net reduction (NR). Furthermore, we conducted a systematic review to compare its performance with existing models. RESULTS: ARTEMIS exhibited excellent risk stratification ability in identifying patients at high risk of mortality. Compared to those below the 25th percentile of ARTEMIS scores, patients with above the 90th percentile had significantly lower overall survival time (HR = 15.43, 95% CI: 9.57-24.88, P = 3.06 × 10-29). ARTEMIS demonstrated satisfactory discrimination ability across four independent populations, with pooled AUC3-year = 0.844 (95% CI: 0.805-0.883), AUC5-year = 0.816 (95% CI: 0.775-0.857), and C-index = 0.803 (95% CI: 0.776-0.830). Meanwhile, ARTEMIS had well calibration performance with pooled E/O ratio 1.060 (95% CI: 1.038-1.083) and 1.090 (95% CI: 1.057-1.122) for 3- and 5-year survival prediction, respectively. Additionally, ARTEMIS is a clinical instrument with acceptable cost-effectiveness for detecting breast cancer patients at high risk of mortality (Pt = 0.4: NB3-year = 19‰, NB5-year = 62‰; NR3-year = 69.21%, NR5-year = 56.01%). ARTEMIS has superior performance compared to existing models in terms of accuracy, extrapolation, and sample size, as indicated by the systematic review. ARTEMIS is implemented as an interactive online tool available at http://bigdata.njmu.edu.cn/ARTEMIS/. CONCLUSION: ARTEMIS is an efficient and practical tool for breast cancer prognostic prediction.

5.
Insect Biochem Mol Biol ; 173: 104175, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134228

RESUMEN

Carboxypeptidase A has been found across various animal species, yet its activation mechanism during the insect molting process remains elusive. Our study specifically delved into the activation mechanism of carboxypeptidase A (Bm-CPA), identified in Bombyx mori's molting fluid during metamorphosis. Initially, western blotting identified two forms of Bm-CPA, 65 kDa and 54 kDa, in the epidermis of silkworms during the molting stage. Expressing the complete Bm-CPA sequence in Pichia pastoris allowed the identification, via mass spectrometry analysis, of a 75-amino-acid propeptide for the initial hydrolysis process. Subsequently, a 35 kDa form of Bm-CPA emerged in the molting fluid, confirmed as the active form through in vitro assays, demonstrating potent carboxypeptidase A activity and faint carboxypeptidase B activity. Four potential activation sites (including Lys158/Arg159 and Arg177/Arg178) were identified through mass spectrometry and amino acid mutation analysis. RNAi of Bm-CPA indicates its critical role in molting. Finally, the carboxypeptidase inhibitor (Bm-CPI) from silkworm molting fluid was expressed to explore its role in regulating Bm-CPA activity, demonstrating a direct interaction with the 35 kDa Bm-CPA. Our research implies Bm-CPA's potential involvement in the silkworm molting process, suggesting diverse regulatory roles. These findings highlight intricate protein regulation patterns during insect metamorphosis and development.

6.
Int J Biol Sci ; 20(10): 3725-3741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113703

RESUMEN

The probability of cardiovascular events has been reported lower in rheumatoid arthritis (RA) patients treated with leflunomide. However, the anti-atherosclerotic and cardiovascular protective effects and metabolism of leflunomide are not explored. In this study, we assessed the potential benefits of leflunomide on atherosclerosis and revealed the underlying mechanism. ApoE-/- mice were fed a western diet (WD) alone or supplemented with leflunomide (20 mg/kg, oral gavage, once per day) for 12 weeks. Samples of the aorta, heart, liver, serum, and macrophages were collected. We found that leflunomide significantly reduced lesion size in both en-face aortas and aortic root in WD-fed ApoE-/- mice. Leflunomide also obviously improved dyslipidemia, reduced hepatic lipid content, and improved disorders of glucose and lipid metabolism in vivo. RNA-Seq results showed that leflunomide effectively regulated the genes' expression involved in the lipid metabolism pathway. Importantly, leflunomide significantly increased the phosphorylation levels of AMPKα and acetyl-CoA carboxylase (ACC) in vivo. Furthermore, leflunomide and its active metabolite teriflunomide suppressed lipid accumulation in free fatty acid (FFA)-induced AML12 cells and improved endothelial dysfunction in palmitic acid (PA)-induced HUVECs through activating AMPK signaling and inhibiting dihydroorotate dehydrogenase (DHODH) signaling pathway. We present evidence that leflunomide and teriflunomide ameliorate atherosclerosis by regulating lipid metabolism and endothelial dysfunction. Our findings suggest a promising use of antirheumatic small-molecule drugs leflunomide and teriflunomide for the treatment of atherosclerosis and related cardiovascular diseases (CVDs).


Asunto(s)
Antirreumáticos , Aterosclerosis , Dihidroorotato Deshidrogenasa , Leflunamida , Metabolismo de los Lípidos , Transducción de Señal , Animales , Leflunamida/uso terapéutico , Leflunamida/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Dihidroorotato Deshidrogenasa/metabolismo , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Masculino , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo
7.
Meat Sci ; 217: 109616, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39089087

RESUMEN

Fat greatly impacts the overall texture and flavor of pork belly. Twice-cooked pork bellies (TPB), typically boiled and sliced before "back to pot" being stir-fried, is a classic Sichuan cuisine among stir-fried dishes. In this study, the effects of substituting conventional pan-frying (PCV) with superheated steam (SHS) technology on the sensory, texture, microstructure and flavor of the fat layers were investigated. SHS was used as an alternative to boiling (120 °C for 15, 20, 25, and 30 min), and "back to pot" stir-frying was also by SHS. TPB precooked for 25 min (P25) with SHS performed better quality characteristics than PCV, with less collagen fiber disruption and lipid droplet area, resulting in a lower hardness and higher shear force. Besides, the low-oxygen environment of SHS retarded the lipid peroxidation, showing a significantly lower MDA content than PCV. Differently, PCV exhibited more grassy and fatty flavors, while P25 exhibited a unique aroma of fruity and creamy due to its higher UFA/SFA ratios in the pre-cooking stage. Overall, the sensory scores of P25 were comparable to those of PCV (with no significant difference), revealing that SHS is expected to be applied to the industrial production of stir-fried dishes.


Asunto(s)
Culinaria , Vapor , Gusto , Animales , Culinaria/métodos , Humanos , Porcinos , Masculino , China , Carne de Cerdo/análisis , Femenino , Adulto , Calor , Peroxidación de Lípido , Pueblos del Este de Asia
8.
Plant Physiol Biochem ; 215: 109041, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39181087

RESUMEN

Emergence heterogeneity caused by epicotyl dormancy contributes to variations in seedling quality during large-scale breeding. However, the mechanism of epicotyl dormancy release remains obscure. We first categorized the emergence stages of Chinese cork oak (Quercus variabilis) using the BBCH-scale. Subsequently, we identified the key stage of the epicotyl dormancy process. Our findings indicated that cold stratification significantly released epicotyl dormancy by increasing the levels of gibberellic acid 3 (GA3) and GA4. Genes associated with GA biosynthesis and signaling also exhibited altered expression patterns. Inhibition of GA biosynthesis by paclobutrazol (PAC) treatment severely inhibited emergence, with no effect on seed germination. Different concentrations (50 µM, 100 µM, and 200 µM) of GA3 and GA4+7 treatments of germinated seeds demonstrated that both can promote the emergence, with GA4 exhibiting a more pronounced effect. In conclusion, this study provides valuable insights into the characterization of epicotyl dormancy in Chinese cork oak and highlights the critical role of GA biosynthesis in seedling emergence. These findings serve as a basis for further investigations on epicotyl dormancy and advancing large-scale breeding techniques.

9.
Life Sci ; : 123013, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182568

RESUMEN

AIMS: The RNA-binding protein LSM7 is essential for RNA splicing, acting as a key component of the spliceosome complex; however, its specific role in breast cancer (BC) has not been extensively investigated. MATERIALS AND METHODS: LSM7 expression in BC samples was evaluated through bioinformatics analysis and immunohistochemistry. The impact of LSM7 on promoting metastatic tumor characteristics was examined using transwell and wound healing assays, as well as an orthotopic xenograft model. Additionally, the involvement of LSM7 in alternative splicing of CD44 was explored via RNA immunoprecipitation and third-generation sequencing. The regulatory role of TCF3 in modulating LSM7 gene expression was further elucidated using luciferase reporter assays and chromatin immunoprecipitation. KEY FINDINGS: Our findings demonstrate that LSM7 was significantly overexpressed in metastatic BC tissues and was associated with poor prognostic outcomes in patients with BC. LSM7 overexpression markedly increased the migratory and invasive capabilities of BC cells in vitro and significantly promoted spontaneous lung metastasis in vivo. Furthermore, RIP-seq analysis revealed that LSM7 binded to CD44 RNA, enhancing the expression of its alternatively spliced isoform CD44s, thereby driving BC metastasis and invasion. Additionally, the transcription factor TCF3 was found to activate LSM7 transcription by directly binding to its promoter. SIGNIFICANCE: In summary, this study highlights the pivotal role of LSM7 in the production of the CD44s isoform and the promotion of breast cancer metastasis. Targeting the TCF3/LSM7/CD44s axis may offer a promising therapeutic strategy for breast cancer treatment.

10.
Eur Radiol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992109

RESUMEN

OBJECTIVES: To establish and validate scoring models for predicting vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC) using computed tomography (CT) and magnetic resonance imaging (MRI), and to intra-individually compare the predictive performance between the two modalities. METHODS: We retrospectively included 324 patients with surgically confirmed HCC who underwent preoperative dynamic CT and MRI with extracellular contrast agent between June 2019 and August 2020. These patients were then divided into a discovery cohort (n = 227) and a validation cohort (n = 97). Imaging features and Liver Imaging Reporting and Data System (LI-RADS) categories of VETC-positive HCCs were evaluated. Logistic regression analyses were conducted on the discovery cohort to identify clinical and imaging predictors associated with VETC-positive cases. Subsequently, separate CT-based and MRI-based scoring models were developed, and their diagnostic performance was compared using generalized estimating equations. RESULTS: On both CT and MRI, VETC-positive HCCs exhibited a higher frequency of size > 5.0 cm, necrosis or severe ischemia, non-smooth tumor margin, targetoid appearance, intratumor artery, and heterogeneous enhancement with septations or irregular ring-like structure compared to VETC-negative HCCs (all p < 0.05). Regarding LI-RADS categories, VETC-positive HCCs were more frequently categorized as LR-M than VETC-negative cases (all p < 0.05). In the validation cohort, the CT-based model showed similar sensitivity (76.7% vs. 86.7%, p = 0.375), specificity (83.6% vs. 74.6%, p = 0.180), and area under the curve value (0.80 vs. 0.81, p = 0.910) to the MRI-based model in predicting VETC-positive HCCs. CONCLUSION: Preoperative CT and MRI demonstrated comparable performance in the identification of VETC-positive HCCs, thus displaying promising predictive capabilities. CLINICAL RELEVANCE STATEMENT: Both computed tomography and magnetic resonance imaging demonstrated promise in preoperatively identifying the vessel-encapsulating tumor cluster pattern in hepatocellular carcinoma, with no statistically significant difference between the two modalities, potentially adding additional prognostic value. KEY POINTS: Computed tomography (CT) and magnetic resonance imaging (MRI) show promise in the preoperative identification of vessels encapsulating tumor clusters-positive hepatocellular carcinoma (HCC). HCC with vessels encapsulating tumor cluster patterns were more frequently LR-M compared to those without. These CT and MRI models showed comparable ability in identifying vessels encapsulating tumor clusters-positive HCC.

11.
Toxins (Basel) ; 16(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39057959

RESUMEN

Tenuazonic acid (TeA), usually found in cereals, fruits, vegetables, oil crops, and their products, was classified as one of the highest public health problems by EFSA as early as 2011, but it has still not been regulated by legislation due to the limited toxicological profile. Moreover, it has been reported that the coexistence of TeA and patulin (PAT) has been found in certain agricultural products; however, there are no available data about the combined toxicity. Considering that the gastrointestinal tract is the physiological barrier of the body, it would be the first target site at which exogenous substances interact with the body. Thus, we assessed the combined toxicity (cell viability, ROS, CAT, and ATP) in Caco-2 cells using mathematical modeling (Chou-Talalay) and explored mechanisms using non-targeted metabolomics and molecular biology methods. It revealed that the co-exposure of TeA + PAT (12.5 µg/mL + 0.5 µg/mL) can induce enhanced toxic effects and more severe oxidative stress. Mechanistically, the lipid and amino acid metabolisms and PI3K/AKT/FOXO signaling pathways were mainly involved in the TeA + PAT-induced synergistic toxic effects. Our study not only enriches the scientific basis for the development of regulatory policies but also provides potential targets and treatment options for alleviating toxicities.


Asunto(s)
Supervivencia Celular , Sinergismo Farmacológico , Metaboloma , Estrés Oxidativo , Patulina , Ácido Tenuazónico , Células CACO-2 , Patulina/toxicidad , Humanos , Ácido Tenuazónico/toxicidad , Ácido Tenuazónico/metabolismo , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Food Chem X ; 23: 101550, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022785

RESUMEN

This study aimed to modify plant protein mixture to improve their functionality and digestibility by limited hydrolysis. Soy protein isolate and corn zein were mixed at the ratio of 5:1 (w/w), followed by limited hydrolysis using papain from 15 to 30 min. The structural characteristics, in vitro digestibility, and functional properties were evaluated. Also, DPPH radical scavenging activity was determined. The results indicated that the molecular weight of different modified samples was largely reduced by limited hydrolysis, and the proportion of random coil was significantly increased. Furthermore, the solubility, foaming, emulsifying and water-holding capacity of hydrolyzed protein mixture were significantly improved, which were close to those of whey protein isolate. In vitro digestibility after 30-min limited hydrolysis was remarkably elevated. In addition, the hydrolyzed protein mixture exhibited a higher antioxidant activity than those of untreated proteins. Overall, limited hydrolysis of protein mixture led to improved digestibility, functionality and antioxidant activity.

13.
ACS Omega ; 9(25): 26941-26950, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947848

RESUMEN

Solution blowing is a rapidly developing technology for the rapid and large-scale preparation of nanofibers, driven by its advantages, such as wide adaptability to raw materials, simple and safe operation, and ease of scalable production. Most of the research related to solution blowing mainly focuses on the fiber spinning and forming principle, fiber structure and properties, and the development of new materials. Limited studies have focused on the airflow field and fiber motion in solution blowing. In this paper, nine nozzles for solution blowing with varying geometrical parameters were designed by adjusting the outer nozzle diameter, inner nozzle outstretched distance, and inner nozzle diameter. The centerline airflow velocity, turbulence intensity, and velocity distribution of the solution blowing were analyzed using the numerical simulation method. The results showed that the outer nozzle diameter had the greatest influence on the air velocity and turbulence intensity. The airflow velocity increased and the turbulence intensity decreased with the increase of the outer nozzle diameter. The inner nozzle outstretched distance only affected the airflow convergence point and had less effect on the airflow velocity and turbulence intensity. The captured trajectory of the polymer jet initially shows a straight or slightly curved development that eventually diverges from the airflow field. With an increasing distance, dispersed fibers exhibit instability, including loop formation, bonding, and separation. The experimental observation of fiber morphology in the solution-blowing web further verified the instability during the fiber movement.

14.
Int J Biol Macromol ; 275(Pt 2): 133551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997845

RESUMEN

In this study, the curcumin was firstly encapsulated in gelatin (GLT) and/or cellulose nanocrystals (CNC) stabilized emulsions, then further mixed with sodium alginate (SA) to form emulsion-filled hydrogel beads loaded with curcumin (Cur). The Cur-loaded emulsions showed a droplet size of 20.3-24.4 µm with a uniform distribution. Introducing CNC and/or SA increased the viscosity of emulsions accompanied by viscoelastic transition, while the modulus was reduced due to destruction of GLT gel. Cur was doubly immobilized in the hydrogel beads with >90 % of encapsulation efficiency. The results of simulated gastrointestinal tract experiments revealed that the beads possessed a good pH sensitivity and controlled release behavior to prolong the retention of Cur in the gastrointestinal tract. After 6 h of UV irradiation, the Cur-loaded emulsion-filled hydrogel beads showed a higher antioxidant activity than that of pure Cur, effectively delaying the photodegradation of Cur. In addition, the beads had better stability in aqueous and acidic environments, which was favorable for prolonging the release of Cur. These results suggest that the emulsion-filled hydrogel beads have great potential for the delivery of lipophilic bioactive molecules.


Asunto(s)
Celulosa , Curcumina , Liberación de Fármacos , Emulsiones , Gelatina , Hidrogeles , Nanopartículas , Curcumina/química , Gelatina/química , Emulsiones/química , Hidrogeles/química , Celulosa/química , Nanopartículas/química , Antioxidantes/química , Alginatos/química , Concentración de Iones de Hidrógeno , Viscosidad , Portadores de Fármacos/química , Tamaño de la Partícula
15.
Biosystems ; 243: 105264, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964652

RESUMEN

Computational analysis of paratope-epitope interactions between antibodies and their corresponding antigens can facilitate our understanding of the molecular mechanism underlying humoral immunity and boost the design of new therapeutics for many diseases. The recent breakthrough in artificial intelligence has made it possible to predict protein-protein interactions and model their structures. Unfortunately, detecting antigen-binding sites associated with a specific antibody is still a challenging problem. To tackle this challenge, we implemented a deep learning model to characterize interaction patterns between antibodies and their corresponding antigens. With high accuracy, our model can distinguish between antibody-antigen complexes and other types of protein-protein complexes. More intriguingly, we can identify antigens from other common protein binding regions with an accuracy of higher than 70% even if we only have the epitope information. This indicates that antigens have distinct features on their surface that antibodies can recognize. Additionally, our model was unable to predict the partnerships between antibodies and their particular antigens. This result suggests that one antigen may be targeted by more than one antibody and that antibodies may bind to previously unidentified proteins. Taken together, our results support the precision of antibody-antigen interactions while also suggesting positive future progress in the prediction of specific pairing.


Asunto(s)
Anticuerpos , Antígenos , Aprendizaje Automático , Antígenos/inmunología , Anticuerpos/inmunología , Anticuerpos/química , Anticuerpos/metabolismo , Humanos , Unión Proteica , Epítopos/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Complejo Antígeno-Anticuerpo/química , Biología Computacional/métodos , Sitios de Unión , Aprendizaje Profundo , Sitios de Unión de Anticuerpos
16.
Food Chem ; 459: 140397, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39018622

RESUMEN

Food proteins represent a vital source of self-assembling peptides, with hydrogels constructed through peptide self-assembly exhibiting widespread utility in the food sector. This review aims to provide a recent research progress in preparation and characterization of hydrogels from food-derived peptides. Also, the self-assembly mechanisms and the impact of factors are discussed. Presently, food-derived self-assembling peptide-based hydrogels can be synthesized using either physical or chemical methodologies and evaluated through methodologies such as microscopic, spectroscopic, and rheological assessment. The self-assembly of food-derived peptides is hierarchically formed by non-covalent interactions, including hydrogen bond and hydrophobic interactions, where variables such as temperature and pH intricately modulate the assembly mechanism. The association between peptide sequence and hydrogel structure in the self-assembly mechanism is also discussed, which remains to be further explored. The present review contributes to application of food-derived peptide-based hydrogels in the fields of food, nutrition and material sciences.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Reología
17.
Int J Biol Macromol ; 277(Pt 1): 134015, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038566

RESUMEN

Nanocellulose has been favored as one of the most promising sustainable nanomaterials, due to its competitive advantages and superior performances such as hydrophilicity, renewability, biodegradability, biocompatibility, tunable surface features, excellent mechanical strength, and high specific surface area. Based on the above properties of nanocellulose and the advantages of hydrogels such as high water absorption, adsorption, porosity and structural adjustability, nanocellulose based hydrogels integrating the benefits of both have attracted extensive attention as promising materials in various fields. In this review, the main fabrication strategies of nanocellulose based hydrogels are initially discussed in terms of different crosslinking methods. Then, the typical properties of nanocellulose based hydrogels are comprehensively summarized, including porous structure, swelling ability, adsorption, mechanical, self-healing, smart response performances. Especially, relying on these properties, the general application of nanocellulose based hydrogels in food field is also discussed, mainly including food packaging, food detection, nutrient embedding delivery, 3D food printing, and enzyme immobilization. Finally, the safety of nanocellulose based hydrogel is summarized, and the current challenges and future perspectives of nanocellulose based hydrogels are put forward.


Asunto(s)
Celulosa , Hidrogeles , Hidrogeles/química , Celulosa/química , Nanoestructuras/química , Embalaje de Alimentos , Porosidad , Materiales Biocompatibles/química , Adsorción
18.
Mol Divers ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926303

RESUMEN

Succinate dehydrogenase inhibitors (SDHIs) as one of the fastest-growing fungicide categories for plant protection. In this study, a series of N'-phenyl pyridylcarbohydrazides as analogues of commercial SDHIs were designed and evaluated for inhibition activity on phytopathogenic fungi to search for potential novel SDHIs. The determination of antifungal activity in vitro and in vivo led to the discovery of a series of compounds with high activity and broad-spectrum property. Especially, N'-(4-fluorophenyl)picolinohydrazide (1c) and N'-(3,4-fluorophenyl)picolinohydrazide (1ae) showed 0.041-1.851 µg/mL of EC50 values on twelve fungi, superior to positive controls carbendazim and boscalid. In vivo activity, 1c at 50 µg/mL showed 61% of control efficacy at the post-treatment 9th day for the infection of P. piricola on apples, slightly smaller than 70% of carbendazim. In terms of action mechanism, 1c showed strong inhibition activity with IC50 of 0.107 µg/mL on SDH in Alternaria brassicae, superior to positive SDHI boscalid (IC50 0.182 µg/mL). Molecular docking indicated that 1c can well bind with the ubiquinone-binding region of SDH mainly by hydrogen bond, carbon hydrogen bond, π-alkyl, amide-π stacking, F-N and F-H interactions. Furthermore, scanning and transmission electron micrographs showed that 1c was able to obviously change the structure of mycelia and cell membrane. Fluorescence staining analysis showed that 1c could increase both the intracellular reactive oxygen species level and mitochondrial membrane potential. Finally, seed germination test, seedling growth test and cytotoxicity assay showed that 1c had very low toxicity to plant growth and mammalian cells. Thus, N'-phenyl pyridylcarbohydrazides especially 1c and 1ae can be considered promising fungicide alternatives for plant protection.

19.
Small ; : e2403710, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884192

RESUMEN

Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd3Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd3Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy (ΔGH) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni-doped Pd3Sn (Ni0.1Pd2.9Sn) show much lower overpotential (-29 mV vs RHE) and Tafel slope (17 mV dec-1) than Pd3Sn (-39 mV vs RHE, 25 mV dec-1) at a current density of 10 mA cm-2. Significantly, the Ni0.1Pd2.9Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni0.1Pd2.9Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.

20.
Food Chem X ; 22: 101506, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38855095

RESUMEN

The purpose of the present work was to encapsulate zingerone (a bioactive compound from ginger) by self-assembling peptides derived from fish viscera. The encapsulation conditions were investigated and the structure of fish peptides-zingerone complex was characterized. The interaction between zingerone and fish peptides was investigated using fluorescence spectroscopy. Further research was performed on the in vitro release of zingerone and fish peptide-zingerone as well as their antiproliferative effects on colon epithelial Caco-2 cells. The results demonstrated that zingerone can be successfully encapsulated by self-assembling peptides derived from fish viscera with high encapsulation efficiency and loading capacity. Furthermore, transmission electron microscope and confocal laser scanning microscope observations revealed the successful encapsulation of zingerone by fish viscera peptides. In addition, in vitro release and antiproliferative activity against Caco-2 cells can be significantly increased by encapsulating zingerone via peptide self-assembly. The current study advances knowledge of encapsulation of bioactive compounds through peptide self-assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA