Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Circulation ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726666

RESUMEN

BACKGROUND: G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS: Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS: Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS: Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.

2.
Comput Biol Med ; 176: 108537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744008

RESUMEN

BACKGROUND: Anti-PD-1/PD-L1 treatment has achieved durable responses in TNBC patients, whereas a fraction of them showed non-sensitivity to the treatment and the mechanism is still unclear. METHODS: Pre- and post-treatment plasma samples from triple negative breast cancer (TNBC) patients treated with immunotherapy were measured by tandem mass tag (TMT) mass spectrometry. Public proteome data of lung cancer and melanoma treated with immunotherapy were employed to validate the findings. Blood and tissue single-cell RNA sequencing (scRNA-seq) data of TNBC patients treated with or without immunotherapy were analyzed to identify the derivations of plasma proteins. RNA-seq data from IMvigor210 and other cancer types were used to validate plasma proteins in predicting response to immunotherapy. RESULTS: A random forest model constructed by FAP, LRG1, LBP and COMP could well predict the response to immunotherapy. The activation of complement cascade was observed in responders, whereas FAP and COMP showed a higher abundance in non-responders and negative correlated with the activation of complements. scRNA-seq and bulk RNA-seq analysis suggested that FAP, COMP and complements were derived from fibroblasts of tumor tissues. CONCLUSIONS: We constructe an effective plasma proteomic model in predicting response to immunotherapy, and find that FAP+ and COMP+ fibroblasts are potential targets for reversing immunotherapy resistance.


Asunto(s)
Inmunoterapia , Proteómica , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología , Femenino , Inmunoterapia/métodos , Análisis de la Célula Individual/métodos , Proteómica/métodos , Antígeno B7-H1/sangre , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Transcriptoma , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Perfilación de la Expresión Génica , Proteoma
3.
Biomater Sci ; 12(10): 2614-2625, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591255

RESUMEN

Chlorambucil (Cbl) is a DNA alkylating drug in the nitrogen mustard family, but the clinical applications of nitrogen mustard antitumor drugs are frequently limited by their poor aqueous solubility, poor cellular uptake, lack of targeting, and severe side effects. Additionally, mitochondria are the energy factories for cells, and tumor cells are more susceptible to mitochondrial dysfunction than some healthy cells, thus making mitochondria an important target for tumor therapy. As a proof-of-concept, direct delivery of Cbl to tumor cells' mitochondria will probably bring about new opportunities for the nitrogen mustard family. Furthermore, IR775 chloride is a small-molecule lipophilic cationic heptamethine cyanine dye with potential advantages of mitochondria targeting, near-infrared (NIR) fluorescence imaging, and preferential internalization towards tumor cells. Here, an amphiphilic drug conjugate was facilely prepared by covalently coupling chlorambucil with IR775 chloride and further self-assembly to form a carrier-free self-delivery theranostic system, in which the two components are both functional units aimed at theranostic improvement. The theranostic IR775-Cbl potentiated typical "1 + 1 > 2" tumor inhibition through specific accumulation in mitochondria, which triggered a remarkable decrease in mitochondrial membrane potential and ATP generation. In vivo biodistribution and kinetic monitoring were achieved by real-time NIR fluorescence imaging to observe its transport inside a living body. Current facile mitochondria-targeting modification with clinically applied drugs was promising for endowing traditional drugs with targeting, imaging, and improved potency in disease theranostics.


Asunto(s)
Carbocianinas , Clorambucilo , Mitocondrias , Nanopartículas , Clorambucilo/química , Clorambucilo/farmacología , Clorambucilo/administración & dosificación , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Animales , Humanos , Nanopartículas/química , Carbocianinas/química , Ratones , Polímeros/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Nanomedicina Teranóstica , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Femenino
4.
Front Immunol ; 15: 1333848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596683

RESUMEN

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Asunto(s)
Fucosa , Polisacáridos , Cloruro de Sodio Dietético , Ratones , Animales , Fucosa/farmacología , Inflamación/metabolismo , Dieta
5.
World J Stem Cells ; 16(3): 287-304, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38577232

RESUMEN

BACKGROUND: The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine. Stem cells can self-organise into microsized organ units, partially modelling tissue function and regeneration. Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases. However, the lack of vasculature limits the utility of dental pulp organoids. AIM: To improve survival and aid in recovery after stem cell transplantation, we demonstrated the three-dimensional (3D) self-assembly of adult stem cell-human dental pulp stem cells (hDPSCs) and endothelial cells (ECs) into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium (CM). METHODS: During culture, primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM. The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids. The biological characteristics of the organoids were analysed, and the regulatory pathways associated with angiogenesis were studied. RESULTS: The combination of these two agents resulted in prevascularized human dental pulp organoids (Vorganoids) that more closely resembled dental pulp tissue in terms of morphology and function. Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis. The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids. CONCLUSION: In this innovative study, we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration, facilitating the development of clinical treatment strategies.

6.
Clin Immunol ; 263: 110227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643891

RESUMEN

T-DM1 (Trastuzumab Emtansine) belongs to class of Antibody-Drug Conjugates (ADC), where cytotoxic drugs are conjugated with the antibody Trastuzumab to specifically target HER2-positive cancer cells. Platelets, as vital components of the blood system, intricately influence the immune response to tumors through complex mechanisms. In our study, we examined platelet surface proteins in the plasma of patients before and after T-DM1 treatment, categorizing them based on treatment response. We identified a subgroup of platelets with elevated expression of CD63 and CD9 exclusively in patients with favorable treatment responses, while this subgroup was absent in patients with poor responses. Another noteworthy discovery was the elevated expression of CD36 in the platelet subgroups of patients exhibiting inadequate responses to treatment. These findings suggest that the expression of these platelet surface proteins may be correlated with the prognosis of T-DM1 treatment. These indicators offer valuable insights for predicting the therapeutic response to T-DM1 and may become important references in future clinical practice, contributing to a better understanding of the impact of ADC therapies and optimizing personalized cancer treatment strategies.


Asunto(s)
Ado-Trastuzumab Emtansina , Plaquetas , Neoplasias de la Mama , Humanos , Femenino , Plaquetas/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/sangre , Ado-Trastuzumab Emtansina/uso terapéutico , Persona de Mediana Edad , Trastuzumab/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Adulto , Anciano , Maitansina/uso terapéutico , Maitansina/análogos & derivados
7.
Sci China Life Sci ; 67(5): 913-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332216

RESUMEN

Fulminant myocarditis is an acute diffuse inflammatory disease of myocardium. It is characterized by acute onset, rapid progress and high risk of death. Its pathogenesis involves excessive immune activation of the innate immune system and formation of inflammatory storm. According to China's practical experience, the adoption of the "life support-based comprehensive treatment regimen" (with mechanical circulation support and immunomodulation therapy as the core) can significantly improve the survival rate and long-term prognosis. Special emphasis is placed on very early identification,very early diagnosis,very early prediction and very early treatment.


Asunto(s)
Miocarditis , Miocarditis/diagnóstico , Miocarditis/terapia , Humanos , China , Adulto , Cardiología/métodos , Cardiología/normas , Pronóstico , Sociedades Médicas
8.
Circulation ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357802

RESUMEN

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.

9.
Sci China Life Sci ; 66(11): 2543-2552, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37405565

RESUMEN

N6-methyladenosine (m6A), the most common and abundant epigenetic RNA modification, governs mRNA metabolism to determine cell differentiation, proliferation and response to stimulation. m6A methyltransferase METTL3 has been reported to control T cell homeostasis and sustain the suppressive function of regulatory T cells (Tregs). However, the role of m6A methyltransferase in other subtypes of T cells remains unknown. T helper cells 17 (Th17) play a pivotal role in host defense and autoimmunity. Here, we found that the loss of METTL3 in T cells caused serious defect of Th17 cell differentiation, and impeded the development of experimental autoimmune encephalomyelitis (EAE). We generated Mettl3f/fIl17aCre mice and observed that METTL3 deficiency in Th17 cells significantly suppressed the development of EAE and displayed less Th17 cell infiltration into central nervous system (CNS). Importantly, we demonstrated that depletion of METTL3 attenuated IL-17A and CCR5 expression by facilitating SOCS3 mRNA stability in Th17 cells, leading to disrupted Th17 cell differentiation and infiltration, and eventually attenuating the process of EAE. Collectively, our results highlight that m6A modification sustains Th17 cell function, which provides new insights into the regulatory network of Th17 cells, and also implies a potential therapeutic target for Th17 cell mediated autoimmune disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Animales , Ratones , Autoinmunidad/genética , Encefalomielitis Autoinmune Experimental/genética , Diferenciación Celular/genética , Metiltransferasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL
10.
Front Nutr ; 10: 1167920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260517

RESUMEN

Background: Fat-soluble vitamins (A, D, and E) are essential for the proper functioning of the immune system and are of central importance for infection risk in humans. Vitamins A, D, and E have been reported to be associated with the immune response following vaccination; however, their effects on the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination remain unknown. Methods: We measured the neutralizing antibody titers against wild type and omicron within 98 days after the third homologous boosting shot of inactivated SARS-CoV-2 vaccine (BBIBP-CorV or CoronaVac) in 141 healthy adults in a prospective, open-label study. High-performance liquid chromatography-tandem mass spectroscopy was used to determine the concentrations of plasma vitamins A, D, and E. Results: We found that the anti-wide-type virus and anti-omicron variant antibody levels significantly increased compared with baseline antibody levels (P < 0.001) after the third vaccination. 25(OH)D3 was significantly negatively associated with the baseline anti-wide-type virus antibody concentrations [beta (95% CI) = -0.331 (-0.659 ~ -0.003)] after adjusting for covariates. A potentially similar association was also observed on day 98 after the third vaccination [beta (95% CI) = -0.317 (-0.641 ~ 0.007)]. After adjusting for covariates, we also found that 25(OH)D3 was significantly negatively associated with the seropositivity of the anti-omicron variant antibody at day 98 after the third vaccination [OR (95% CI) = 0.940 (0.883 ~ 0.996)]. The association between plasma 25(OH)D3 with anti-wild-type virus antibody levels and seropositivity of anti-omicron variant antibodies were persistent in subgroup analyses. We observed no association between retinol/α-tocopherol and anti-wide-type virus antibody levels or anti-omicron variant antibody seropositive in our study. Conclusion: The third inactivated SARS-CoV-2 vaccination significantly improved the ability of anti-SARS-CoV-2 infection in the human body. Higher vitamin D concentrations could significantly decrease the anti-wide-type virus-neutralizing antibody titers and anti-omicron variant antibody seropositive rate after the inactivated SARS-CoV-2 vaccination in people with adequate levels of vitamin D, better immune status, and stronger immune response; further studies comprising large cohorts of patients with different nutritional status are warranted to verify our results.

11.
J Int Med Res ; 51(6): 3000605231184038, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389885

RESUMEN

OBJECTIVE: To investigate the effects of valproic acid (VPA) on skin wound healing in mice. METHODS: Full-thickness wounds were created in mice, and then VPA was applied. The wound areas were quantified daily. In the wounds, granulation tissue growth, epithelialization, collagen deposition, and the mRNA levels of inflammatory cytokines were measured; furthermore, apoptotic cells were labeled. In vitro, VPA was added to RAW 264.7 cells (macrophages) stimulated with lipopolysaccharide, and apoptotic Jurkat cells were cocultured with the VPA-pretreated macrophages. Then, phagocytosis was analyzed, and the mRNA levels of phagocytosis-associated molecules and inflammatory cytokines were measured in the macrophages. RESULTS: VPA application significantly accelerated wound closure, granulation tissue growth, collagen deposition, and epithelialization. In wounds, the levels of tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß were decreased by VPA, whereas those of IL-10 and transforming growth factor-ß1 were increased. Additionally, VPA reduced the number of apoptotic cells. In vitro, VPA inhibited the inflammatory activation of macrophages and promoted the phagocytosis of apoptotic cells by macrophages. CONCLUSION: VPA accelerated skin wound healing, which could be partly attributable to its anti-inflammatory and apoptotic cell clearance-promoting effects, indicating that VPA could be a promising candidate for enhancing skin wound healing.


Asunto(s)
Fagocitosis , Ácido Valproico , Animales , Ratones , Ácido Valproico/farmacología , Antiinflamatorios , Citocinas/genética , Interleucina-6 , ARN Mensajero , Apoptosis , Cicatrización de Heridas
12.
Circ Res ; 133(3): 220-236, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37377022

RESUMEN

BACKGROUND: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS: GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS: We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Humanos , Ratones , Corazón , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo
13.
Circulation ; 147(18): 1382-1403, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36951067

RESUMEN

BACKGROUND: Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism. METHODS: Protein S-sulfhydration in endothelial cells (ECs) during AAD was detected and hub genes regulating homeostasis of the endothelium were identified. Clinical data of patients with AAD and healthy controls were collected, and the level of the cystathionine γ lyase (CSE)/hydrogen sulfide (H2S) system in plasma and aortic tissue were determined. Mice with EC-specific CSE deletion or overexpression were generated, and the progression of AAD was determined. Unbiased proteomics and coimmunoprecipitation combined with mass spectrometry analysis were conducted to determine the upstream regulators of the CSE/H2S system and the findings were confirmed in transgenic mice. RESULTS: Higher plasma H2S levels were associated with a lower risk of AAD, after adjustment for common risk factors. CSE was reduced in the endothelium of AAD mouse and aorta of patients with AAD. Protein S-sulfhydration was reduced in the endothelium during AAD and protein disulfide isomerase (PDI) was the main target. S-sulfhydration of PDI at Cys343 and Cys400 enhanced PDI activity and mitigated endoplasmic reticulum stress. EC-specific CSE deletion was exacerbated, and EC-specific overexpression of CSE alleviated the progression of AAD through regulating the S-sulfhydration of PDI. ZEB2 (zinc finger E-box binding homeobox 2) recruited the HDAC1-NuRD complex (histone deacetylase 1-nucleosome remodeling and deacetylase) to repress the transcription of CTH, the gene encoding CSE, and inhibited PDI S-sulfhydration. EC-specific HDAC1 deletion increased PDI S-sulfhydration and alleviated AAD. Increasing PDI S-sulfhydration with the H2S donor GYY4137 or pharmacologically inhibiting HDAC1 activity with entinostat alleviated the progression of AAD. CONCLUSIONS: Decreased plasma H2S levels are associated with an increased risk of aortic dissection. The endothelial ZEB2-HDAC1-NuRD complex transcriptionally represses CTH, impairs PDI S-sulfhydration, and drives AAD. The regulation of this pathway effectively prevents AAD progression.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Animales , Ratones , Cistationina gamma-Liasa/genética , Células Endoteliales/metabolismo , Endotelio/metabolismo , Histona Desacetilasa 1 , Sulfuro de Hidrógeno/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Proteína S , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
14.
Mol Cancer ; 22(1): 48, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906534

RESUMEN

The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.


Asunto(s)
Matriz Extracelular , Neoplasias , Humanos , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Inmunoterapia , Microambiente Tumoral/fisiología
15.
Nat Cell Biol ; 25(2): 273-284, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646788

RESUMEN

Impairment of the circadian clock is linked to cancer development. However, whether the circadian clock is modulated by oncogenic receptor tyrosine kinases remains unclear. Here we demonstrated that receptor tyrosine kinase activation promotes CK2-mediated CLOCK S106 phosphorylation and subsequent disassembly of the CLOCK-BMAL1 dimer and suppression of the downstream gene expression in hepatocellular carcinoma (HCC) cells. In addition, CLOCK S106 phosphorylation exposes its nuclear export signal to bind Exportin1 for nuclear exportation. Cytosolic CLOCK acetylates PRPS1/2 K29 and blocks HSC70-mediated and lysosome-dependent PRPS1/2 degradation. Stabilized PRPS1/2 promote de novo nucleotide synthesis and HCC cell proliferation and liver tumour growth. Furthermore, CLOCK S106 phosphorylation and PRPS1/2 K29 acetylation are positively correlated in human HCC specimens and with HCC poor prognosis. These findings delineate a critical mechanism by which oncogenic signalling inhibits canonical CLOCK transcriptional activity and simultaneously confers CLOCK with instrumental moonlighting functions to promote nucleotide synthesis and tumour growth.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Nucleótidos/metabolismo , Fosforilación
16.
Circ Res ; 132(2): 208-222, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656967

RESUMEN

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Ratones , Apoptosis/fisiología , Hipoxia/metabolismo , Isquemia/metabolismo , Carioferinas , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/genética
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166586, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374802

RESUMEN

Lenvatinib, a multitarget tyrosine kinase inhibitor (TKI), increases the incidence of severe hypertension and thus the incidence of cardiovascular complications. Inhibition of ferroptosis, a newly recognized type of cell death, alleviates endothelial dysfunction. Here, we report that lenvatinib-induced hypertension is associated with ferroptosis of endothelial cells. RNA sequencing (RNA-seq) showed that lenvatinib led to ferroptosis of endothelial cells and that administration of mouse with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, dramatically ameliorated lenvatinib-induced hypertension and reversed lenvatinib-induced impairment of endothelium-dependent relaxation (EDR). Furthermore, lenvatinib significantly reduced glutathione peroxidase 4 (GPX4) expressions in the mouse aorta and human umbilical vein endothelial cells (HUVECs) and increased lipid peroxidation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) levels in HUVECs. Immunofluorescence and Western blotting showed that lenvatinib significantly reduced Yes-associated protein (YAP) nuclear translocation but not cytoplasmic YAP expression in HUVECs. The data, generated from both in vivo and in vitro, showed that lenvatinib reduced total YAP (t-YAP) expression and increased the phosphorylation of YAP at both Ser127 and Ser397, without affecting YAP mRNA levels in HUVECs. XMU-MP-1 mediated YAP activation or YAP overexpression effectively attenuated the lenvatinib-induced decrease in GPX4 expression and increases in LDH release and MDA levels. In addition, overexpression of YAP in HUVECs ameliorated lenvatinib-induced decrease in the mRNA and protein levels of spermidine/spermine N (1)-acetyltransferase-1 (SAT1), heme oxygenase-1 (HO-1), and ferritin heavy chain 1 (FTH1). Taken together, our data suggest that lenvatinib-induced inhibition of YAP led to ferroptosis of endothelial cells and subsequently resulted in vascular dysfunction and hypertension.


Asunto(s)
Ferroptosis , Hipertensión , Humanos , Ratones , Animales , Presión Sanguínea , Células Endoteliales de la Vena Umbilical Humana , ARN Mensajero
18.
BMC Genomics ; 23(1): 772, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434523

RESUMEN

BACKGROUND: The transcriptional changes around zygotic genome activation (ZGA) in preimplantation embryos are critical for studying mechanisms of embryonic developmental arrest and searching for key transcription factors. However, studies on the transcription profile of porcine ZGA are limited. RESULTS: In this study, we performed RNA sequencing in porcine in vivo developed (IVV) and somatic cell nuclear transfer (SCNT) embryo at different stages and compared the transcriptional activity of porcine embryos with mouse, bovine and human embryos. The results showed that the transcriptome map of the early porcine embryos was significantly changed at the 4-cell stage, and 5821 differentially expressed genes (DEGs) in SCNT embryos failed to be reprogrammed or activated during ZGA, which mainly enrichment to metabolic pathways. c-MYC was identified as the highest expressed transcription factor during ZGA. By treating with 10,058-F4, an inhibitor of c-MYC, the cleavage rate (38.33 ± 3.4%) and blastocyst rate (23.33 ± 4.3%) of porcine embryos were significantly lower than those of the control group (50.82 ± 2.7% and 34.43 ± 1.9%). Cross-species analysis of transcriptome during ZGA showed that pigs and bovines had the highest similarity coefficient in biological processes. KEGG pathway analysis indicated that there were 10 co-shared pathways in the four species. CONCLUSIONS: Our results reveal that embryos with impaired developmental competence may be arrested at an early stage of development. c-MYC helps promote ZGA and preimplantation embryonic development in pigs. Pigs and bovines have the highest coefficient of similarity in biological processes during ZGA. This study provides an important reference for further studying the reprogramming regulatory mechanism of porcine embryos during ZGA.


Asunto(s)
Transcriptoma , Cigoto , Embarazo , Femenino , Bovinos , Animales , Porcinos/genética , Humanos , Ratones , Cigoto/metabolismo , Desarrollo Embrionario/genética , Genoma , Técnicas de Transferencia Nuclear , Mamíferos/genética , Factores de Transcripción/metabolismo
19.
EMBO J ; 41(22): e111038, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36215698

RESUMEN

Impaired clearance of beta-amyloid (Aß) is a primary cause of sporadic Alzheimer's disease (AD). Aß clearance in the periphery contributes to reducing brain Aß levels and preventing Alzheimer's disease pathogenesis. We show here that erythropoietin (EPO) increases phagocytic activity, levels of Aß-degrading enzymes, and Aß clearance in peripheral macrophages via PPARγ. Erythropoietin is also shown to suppress Aß-induced inflammatory responses. Deletion of EPO receptor in peripheral macrophages leads to increased peripheral and brain Aß levels and exacerbates Alzheimer's-associated brain pathologies and behavioral deficits in AD-model mice. Moreover, erythropoietin signaling is impaired in peripheral macrophages of old AD-model mice. Exogenous erythropoietin normalizes impaired EPO signaling and dysregulated functions of peripheral macrophages in old AD-model mice, promotes systemic Aß clearance, and alleviates disease progression. Erythropoietin treatment may represent a potential therapeutic approach for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Eritropoyetina , Animales , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Encéfalo/metabolismo , Macrófagos/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
20.
Front Pharmacol ; 13: 970812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278222

RESUMEN

Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure-induced hypertension (CIH) and identify the underlying mechanisms in SD rats. Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats. Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil. Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA