Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Nature ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358506

RESUMEN

Mutation of tet methylcytosine dioxygenase 2 (encoded by TET2) drives myeloid malignancy initiation and progression1-3. TET2 deficiency is known to cause a globally opened chromatin state and activation of genes contributing to aberrant haematopoietic stem cell self-renewal4,5. However, the open chromatin observed in TET2-deficient mouse embryonic stem cells, leukaemic cells and haematopoietic stem and progenitor cells5 is inconsistent with the designated role of DNA 5-methylcytosine oxidation of TET2. Here we show that chromatin-associated retrotransposon RNA 5-methylcytosine (m5C) can be recognized by the methyl-CpG-binding-domain protein MBD6, which guides deubiquitination of nearby monoubiquitinated Lys119 of histone H2A (H2AK119ub) to promote an open chromatin state. TET2 oxidizes m5C and antagonizes this MBD6-dependent H2AK119ub deubiquitination. TET2 depletion thereby leads to globally decreased H2AK119ub, more open chromatin and increased transcription in stem cells. TET2-mutant human leukaemia becomes dependent on this gene activation pathway, with MBD6 depletion selectively blocking proliferation of TET2-mutant leukaemic cells and largely reversing the haematopoiesis defects caused by Tet2 loss in mouse models. Together, our findings reveal a chromatin regulation pathway by TET2 through retrotransposon RNA m5C oxidation and identify the downstream MBD6 protein as a feasible target for developing therapies specific against TET2 mutant malignancies.

2.
World J Hepatol ; 16(9): 1258-1268, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39351516

RESUMEN

Inherited metabolic liver diseases arise from genetic mutations that lead to disruptions in liver metabolic pathways and are predominantly observed in pediatric populations. The spectrum of genetic metabolic liver disorders is diverse, encompassing a range of conditions associated with aberrations in iron, copper, carbohydrate, lipid, protein, and amino acid metabolism. Historically, research in the domain of genetic metabolic liver diseases has predominantly concentrated on hepatic parenchymal cell alterations. Nevertheless, emerging studies suggest that inherited metabolic liver diseases exert significant influences on the immune microenvironment, both within the liver and systemically. This review endeavors to encapsulate the immunological features of genetic metabolic liver diseases, aiming to expand the horizons of researchers in this discipline, and to elucidate the underlying pathophysiological mechanisms pertinent to hereditary metabolic liver diseases and to propose innovative therapeutic approaches.

3.
Angew Chem Int Ed Engl ; : e202415226, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256966

RESUMEN

An on-going challenge with COVID-19, which has huge implications for future pandemics, is the rapid emergence of viral variants that makes diagnostic tools less accurate, calling for rapid identification of recognition elements for detecting new variants caused by mutations. We hypothesize that we can fight mutations of the viruses with mutations of existing recognition elements. We demonstrate this concept via rapidly evolving an existing DNA aptamer originally selected for the spike protein (S-protein) of wildtype SARS-CoV-2 to enhance the interaction with the same protein of the Omicron variants. The new aptamer, MBA5SA1, has acquired 22 mutations within its 40-nucleotide core sequence and improved its binding affinity for the S-proteins of diverse Omicron subvariants by > 100-fold compared to its parental aptamer (improved from nanomolar to picomolar affinity). Deep sequencing analysis reveals dynamic competitions among several MBA5SA1 variants in response to increasing selection pressure imposed during in vitro selection, with MBA5SA1 being the final winner of the competition. Additionally, MBA5SA1 was implemented into an enzyme-linked aptamer binding assay (ELABA), which was applied for detecting Omicron variants in the saliva of infected patients. The assay produced a sensitivity of 86.5% and a specificity of 100%, which was established with 83 clinical samples.

4.
J Agric Food Chem ; 72(37): 20432-20443, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39253862

RESUMEN

For background, Hirsutella sinensis, the only anamorphic fungus considered an effective substitute for Cordyceps sinensis, possesses immunoregulatory properties. However, the specific mechanism underlying the immunoregulatory function of Hirsutella sinensis remains unclear. The purpose is to investigate the therapeutic effects of Hirsutella sinensis alcohol extract (HSAE) on immune dysregulation and elucidate the underlying mechanisms involved. For methods, we established inflammatory and immunosuppression models in vitro and in vivo to evaluate the bidirectional immunoregulatory function of HSAE via qRT-PCR and immunoblotting. We also studied its potential mechanism via RNA sequencing and transcriptional analysis. We further established M1 and M2 cell models to explore the effect of HSAE on M1/M2 polarization using qRT-PCR, immunoblotting, and flow cytometry. For results, our data demonstrated enhanced proliferation, phagocytosis, and antipathogenic activities of macrophages. Treatment with HSAE led to increases in the proportions of CD3+ and CD4+ immune cells in cyclophosphamide-induced immunosuppressed mice. Additionally, HSAE reduced the lipopolysaccharide (LPS)-induced expression of Il1b, Il6, Ifnb1, and Cxcl10 by inhibiting the activation of the NF-κB and MAPK pathways in vitro and improved mouse survival by reducing the proportion of M1/M2 macrophages in septic mice. Finally, we found that HSAE inhibited M1 polarization by decreasing the expression of iNOS and CD86 and promoted M2 polarization by increasing the expression of ARG1 and CD206. For conclusions, our study provides evidence that HSAE has the potential to enhance immune responses and suppress excessive inflammation. These effects were realized by modulating macrophage polarization, providing novel insights into the fundamental mechanism underlying the bidirectional immunomodulatory effect of HSAE.


Asunto(s)
Macrófagos , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Humanos , Células RAW 264.7 , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Fagocitosis/efectos de los fármacos , Ratones Endogámicos BALB C , Factores Inmunológicos/farmacología , Factores Inmunológicos/química
5.
ACS Sens ; 9(9): 4599-4607, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39289811

RESUMEN

A comprehensive investigation into how nanostructures alter real-time DNA hybridization kinetics in both buffer and complex media and under a wide range of probe and target concentrations is currently lacking. In response, we use a real-time, wash-free, and in situ assay to study DNA hybridization kinetics by performing continuous electrochemical measurements in different media. We investigated the differences in hybridization kinetics under three regimes of probe density (low, medium, and high) and over three orders of magnitude of target concentrations (0.01-1 µM). Additionally, we compared the performance of planar and nanostructured electrodes in buffer, blood, urine, and saliva. Our experiments indicate that adding nanostructures to the transducer surface is only effective under a specific probe/target concentration regime. Additionally, we found that direct electrochemical readout is possible in the examined physiological media, with measurements in blood showing the highest and saliva showing the lowest signal magnitudes compared to buffer.


Asunto(s)
ADN , Técnicas Electroquímicas , Electrodos , Nanoestructuras , Hibridación de Ácido Nucleico , Saliva , ADN/química , Nanoestructuras/química , Cinética , Saliva/química , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos
6.
Sci Total Environ ; 954: 176333, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304156

RESUMEN

Salinization is very detrimental to photosynthetic processes and plant growth, while nanoparticles (NPs) are considered to be the emerging materials to improve plant adaptability to salt stress. Cyclocarya paliurus is being planted on saline-alkali soils to meet the growing demand for its leaves and medicinal products. However, this species exhibits low salt tolerance and little information is available on whether NPs application would mitigate the salt-induced effects. This study explored the influence of three oxide NPs and their application doses on improving salt tolerance in C. paliurus under simulated natural conditions. The results showed that these oxide NPs could modify the salt tolerance in C. paliurus seedlings, but the alleviating effects varied in the NPs types and their application doses. Under the salt stress, foliar applications of SiO2-NPs with 500 mg L-1 and MnO2-NPs with 50 mg L-1 significantly increased net photosynthetic rate and seedling height by 52.0-59.5 %, and reduced the salt injury index by 67.6-70.7 %. Transcriptomic analysis revealed that the genes related to photosynthesis pathway were well responsive to both salt stress and NPs application, while the applications of high-dose SiO2- and MnO2-NPs up-regulated the expression of 50 photosynthesis-related genes. Weighted gene co-expression network analysis (WGCNA) indicated there existed a close relationship between physiological parameters and gene expression patterns, and the nine key genes in mitigating salt stress in C. paliurus were identified after the NPs application. Our findings suggested that the effects of NPs on mitigating salt-induced damages depending on the NP type and applied dose. The applications of SiO2-NPs and MnO2-NPs with an appropriate dose hold great promise for mitigating the salt-induced photosynthetic dysfunction via regulation of related key genes, and ultimately promoting plant growth and ameliorating the salt-tolerance.

7.
Prog Orthod ; 25(1): 30, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098934

RESUMEN

BACKGROUND: Palatal expansion is a common way of treating maxillary transverse deficiency. Under mechanical force, the midpalatal suture is expanded, causing local immune responses. This study aimed to determine whether macrophages participate in bone remodeling of the midpalatal suture during palatal expansion and the effects on bone remodeling. METHODS: Palatal expansion model and macrophage depletion model were established. Micro-CT, histological staining, and immunohistochemical staining were used to investigate the changes in the number and phenotype of macrophages during palatal expansion as well as the effects on bone remodeling of the midpalatal suture. Additionally, the effect of mechanically induced M2 macrophages on palatal osteoblasts was also elucidated in vitro. RESULTS: The number of macrophages increased significantly and polarized toward M2 phenotype with the increase of the expansion time, which was consistent with the trend of bone remodeling. After macrophage depletion, the function of osteoblasts and bone formation at the midpalatal suture were impaired during palatal expansion. In vitro, conditioned medium derived from M2 macrophages facilitated osteogenic differentiation of osteoblasts and decreased the RANKL/OPG ratio. CONCLUSIONS: Macrophages through polarizing toward M2 phenotype participated in midpalatal suture bone remodeling during palatal expansion, which may provide a new idea for promoting bone remodeling from the perspective of regulating macrophage polarization.


Asunto(s)
Remodelación Ósea , Macrófagos , Osteoblastos , Técnica de Expansión Palatina , Microtomografía por Rayos X , Remodelación Ósea/fisiología , Animales , Hueso Paladar , Ligando RANK , Suturas Craneales , Osteogénesis/fisiología , Diferenciación Celular , Ratones , Osteoprotegerina , Masculino , Estrés Mecánico , Fenotipo
8.
Int J Surg ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995162

RESUMEN

BACKGROUND: The high recurrent rate after liver transplantation (LT) remains a clinical challenge, especially for those exceeding the Milan criteria (MC) and with high RETREAT scores. Therefore, the authors aim to investigate whether neoadjuvant systemic therapy allows safely administered and effectively reduces post-LT recurrence for those patients. METHODS: In this prospective, randomized, open-label, pilot study, patients with HCC exceeding the MC were randomly assigned to PLENTY or control group before LT. The primary endpoint of the study was the recurrence-free survival after LT. RESULTS: Twenty-two patients were enrolled and randomly assigned: 11 to the PLENYT group and 11 to the control group. The 30-month tumor-specific RFS was 37.5% in the PLENTY group and 12.5% in the control group. The 12-month tumor-specific RFS after LT was significantly improved in the PLENTY group (87.5%) compared to the control group (37.5%) (P=0·0022). The objective response rate in the PLENTY group was 30 and 60% when determined by RECIST 1.1 and mRECIST, respectively. Six patients (60%) had significant tumor necrosis, including three (30%) who had complete tumor necrosis at histopathology. No acute allograft rejection after LT occurred in the PLENTY and Control group. CONCLUSION: Neoadjuvant pembrolizumab plus lenvatinib before LT appears to be safe and feasible, associated with significantly better RFS for patients exceeding the MC. Despite the limitations of small sample size, this is the first RCT to evaluate neoadjuvant PD-1 blockade combined with tyrosine kinase inhibitors in LT recipients, the results of this study will inform future research.

9.
PLoS One ; 19(7): e0298564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008464

RESUMEN

High-quality, chromosome-scale genomes are essential for genomic analyses. Analyses, including 3D genomics, epigenetics, and comparative genomics rely on a high-quality genome assembly, which is often accomplished with the assistance of Hi-C data. Curation of genomes reveal that current Hi-C-assisted scaffolding algorithms either generate ordering and orientation errors or fail to assemble high-quality chromosome-level scaffolds. Here, we offer the software Puzzle Hi-C, which uses Hi-C reads to accurately assign contigs or scaffolds to chromosomes. Puzzle Hi-C uses the triangle region instead of the square region to count interactions in a Hi-C heatmap. This strategy dramatically diminishes scaffolding interference caused by long-range interactions. This software also introduces a dynamic, triangle window strategy during assembly. Initially small, the window expands with interactions to produce more effective clustering. Puzzle Hi-C outperforms available scaffolding tools.


Asunto(s)
Algoritmos , Genómica , Programas Informáticos , Genómica/métodos , Cromosomas/genética , Humanos , Genoma
10.
Anal Chem ; 96(24): 10028-10037, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38853671

RESUMEN

Nucleic acids play a pivotal role in the diagnosis of diseases. However, rapid, cost-efficient, and ultrasensitive identification of nucleic acid targets still represents a significant challenge. Herein, we describe an enzyme-free DNA amplification method capable of achieving accurate and ultrasensitive nucleic acid detection via DNA-templated click ligation chain reaction (DT-CLCR) catalyzed by a heterogeneous nanocatalyst made of Cu2O (hnCu2O). This hnCu2O-DT-CLCR method is built on two cross-amplifying hnCu2O-catalyzed DNA-templated azide-alkyne cycloaddition-driven DNA ligation reactions that boast a fast reaction rate and a high DNA ligation yield in minutes, enabling rapid exponential amplification of specific DNA targets. This newly developed hnCu2O-DT-CLCR-enabled DNA amplification strategy is further integrated with two signal reporting mechanisms to achieve low-cost and easy-to-use biosensors: an electrochemical sensor through the conjugation of a methylene blue redox reporter to a DNA probe used in hnCu2O-DT-CLCR and a colorimetric sensor through the incorporation of the split-to-intact G-quadruplex DNAzyme encoded into hnCu2O-DT-CLCR. Both sensors are able to achieve specific detection of the intended DNA target with a limit of detection at aM ranges, even when challenged in complex biological matrices. The combined hnCu2O-DT-CLCR and sensing strategies offer attractive universal platforms for enzyme-free and yet efficient detection of specific nucleic acid targets.


Asunto(s)
Química Clic , Cobre , ADN , Técnicas de Amplificación de Ácido Nucleico , Cobre/química , ADN/química , Catálisis , Humanos , Técnicas Biosensibles/métodos , Límite de Detección , ADN Catalítico/química , ADN Catalítico/metabolismo , Azidas/química , Colorimetría/métodos , Técnicas Electroquímicas/métodos , Reacción de Cicloadición
11.
Pharmacol Res ; 205: 107257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866264

RESUMEN

Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Oligosacáridos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Envejecimiento/metabolismo , Envejecimiento/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ratas Sprague-Dawley , Ratas , Humanos , Microbioma Gastrointestinal/efectos de los fármacos
12.
Ecol Evol ; 14(6): e11570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898930

RESUMEN

The geographical variation and domestication of tree species are an important part of the theory of forest introduction, and the tracing of the germplasm is the theoretical basis for the establishment of high-quality plantations. Chinese pine (Pinus tabuliformis Carr.) is an important native timber tree species widely distributed in northern China, but it is unclear exactly where germplasm of the main Chinese pine plantation populations originated. Here, using two mtDNA markers, we analyzed 796 individuals representing 35 populations (matR marker), and 873 individuals representing 38 populations (nad5-1 marker) of the major natural and artificial populations in northern China, respectively (Shanxi, Hebei and Liaoning provinces). The results confirmed that the core position of natural SX* populations ("*" means natural population) in the Chinese pine populations of northern China, the genetic diversity of HB and LN plantations was higher than that of natural SX* populations, and there was a large difference in genetic background within the groups of SX* and LN, HB showed the opposite. More importantly, we completed the "point by point" tracing of the HB and LN plantings. The results indicated that almost all HB populations originated from SX* (GDS*, ZTS*, GCS*, and THS*), which resulted in homogeneity of the genetic background of HB populations. Most of germplasm of the LN plantations originated from LN* (ZJS* and WF*), and the other part originated from GDS* (SX*), resulting in the large differences in the genetic background within the LN group. Our results provided a reliable theoretical basis for the scientific allocation, management, and utilization of Chinese pine populations in northern China, and for promoting the high-quality establishment of Chinese pine plantations.

13.
Bone ; 185: 117132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789096

RESUMEN

The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.


Asunto(s)
Remodelación Ósea , Glucólisis , Inflamación , Osteogénesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Remodelación Ósea/fisiología , Inflamación/metabolismo , Inflamación/patología , Osteogénesis/fisiología , Ratones , Ratones Endogámicos C57BL , L-Lactato Deshidrogenasa/metabolismo , Fosforilación Oxidativa , Microambiente Celular , Masculino
14.
Braz J Med Biol Res ; 57: e13469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775548

RESUMEN

Older adults have a high prevalence of falls due to a decline in physiological functions and various chronic diseases. This study aimed to investigate the prevalence of and risk factors for falls among older individuals in the Chinese Longitudinal Healthy Longevity Survey (CLHLS). We collected information from 9737 older individuals (average age=84.26 years) from the CLHLS and used binary logistic regression analysis to explore the independent risk factors and protective factors for falls. The logistic regression analysis results are reported as adjusted odds ratios (aORs) and 95% confidence intervals (95%CIs). The prevalence of falls among older adults in China was 21.6%, with women (24.6%) having a higher prevalence than men (18.1%). Logistic regression analysis revealed that never (or rarely) eating fresh fruit, difficulty with hearing, cataracts, and arthritis were the common independent risk factors for falls in older Chinese men and women. Among men, age ≥80 years (aOR=1.86), never doing housework (aOR=1.36), and dyslipidemia (aOR=1.47) were risk factors, while eating milk products once a week was a protective factor. Alcohol consumption (aOR=1.40), physical labor (aOR=1.28), and heart disease (aOR=1.21) were risk factors for falls in women, while a daily sleep duration of 6-12 h and garlic consumption once a week were protective factors. The prevalence of falls among older adults in China is 21.6% and is greater in women than in men. These risk and protective factors can be used to formulate reasonable recommendations for living habits, diet, and chronic disease control strategies.


Asunto(s)
Accidentes por Caídas , Humanos , Accidentes por Caídas/estadística & datos numéricos , Masculino , Femenino , Factores de Riesgo , Prevalencia , China/epidemiología , Anciano de 80 o más Años , Anciano , Estudios Longitudinales , Modelos Logísticos , Pueblos del Este de Asia
15.
J Cell Mol Med ; 28(9): e18350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700030

RESUMEN

Mechanical force induces hypoxia in the pulpal area by compressing the apical blood vessels of the pulp, triggering pulpal inflammation during orthodontic tooth movement. However, this inflammation tends to be restorable. Macrophages are recognized as pivotal immunoreactive cells in the dental pulp. Whether they are involved in the resolution of pulpal inflammation in orthodontic teeth remains unclear. In this study, we investigated macrophage polarization and its effects during orthodontic tooth movement. It was demonstrated that macrophages within the dental pulp polarized to M2 type and actively participated in the process of pulpal inflammation resolution. Inflammatory reactions were generated and vascularization occurred in the pulp during orthodontic tooth movement. Macrophages in orthodontic pulp show a tendency to polarize towards M2 type as a result of pulpal hypoxia. Furthermore, by blocking M2 polarization, we found that macrophage M2 polarization inhibits dental pulp-secreting inflammatory factors and enhances VEGF production. In conclusion, our findings suggest that macrophages promote pulpal inflammation resolution by enhancing M2 polarization and maintaining dental health during orthodontic tooth movement.


Asunto(s)
Pulpa Dental , Inflamación , Macrófagos , Técnicas de Movimiento Dental , Pulpa Dental/metabolismo , Pulpa Dental/patología , Animales , Macrófagos/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Polaridad Celular , Masculino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pulpitis/patología , Pulpitis/metabolismo , Activación de Macrófagos
16.
J Orthop Surg Res ; 19(1): 257, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649946

RESUMEN

BACKGROUND: The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism. MATERIALS AND METHODS: PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. RESULTS: Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs. CONCLUSIONS: Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.


Asunto(s)
MicroARNs , Osteogénesis , Ligamento Periodontal , ARN Circular , Células Madre , Ligamento Periodontal/citología , Osteogénesis/genética , Osteogénesis/fisiología , Humanos , ARN Circular/genética , ARN Circular/fisiología , MicroARNs/genética , Células Madre/metabolismo , Células Cultivadas , Mecanotransducción Celular/fisiología , Diferenciación Celular/genética , Estrés Mecánico , Proteínas Serina-Treonina Quinasas/genética
17.
Angew Chem Int Ed Engl ; 63(20): e202400413, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38458987

RESUMEN

High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Técnicas Electroquímicas , Aprendizaje Automático , SARS-CoV-2 , Aptámeros de Nucleótidos/química , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Técnicas Electroquímicas/métodos , COVID-19/diagnóstico , COVID-19/virología , Cinética , Virus de la Influenza A , Antígenos Virales/análisis , Antígenos Virales/inmunología , Técnicas Biosensibles/métodos
18.
Nat Cell Biol ; 26(3): 421-437, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409327

RESUMEN

Type 1 diabetes (T1D) is characterized by the destruction of pancreatic ß-cells. Several observations have renewed the interest in ß-cell RNA sensors and editors. Here, we report that N 6-methyladenosine (m6A) is an adaptive ß-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in ß-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hyper methylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-ßH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in ß-cells delayed diabetes progression in the non-obese diabetic mouse model of T1 D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human ß-cells. Collectively, we report that m6A regulates the innate immune response at the ß-cell level during the onset of T1D in humans.

19.
Braz. j. med. biol. res ; 57: e13469, fev.2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1557309

RESUMEN

Older adults have a high prevalence of falls due to a decline in physiological functions and various chronic diseases. This study aimed to investigate the prevalence of and risk factors for falls among older individuals in the Chinese Longitudinal Healthy Longevity Survey (CLHLS). We collected information from 9737 older individuals (average age=84.26 years) from the CLHLS and used binary logistic regression analysis to explore the independent risk factors and protective factors for falls. The logistic regression analysis results are reported as adjusted odds ratios (aORs) and 95% confidence intervals (95%CIs). The prevalence of falls among older adults in China was 21.6%, with women (24.6%) having a higher prevalence than men (18.1%). Logistic regression analysis revealed that never (or rarely) eating fresh fruit, difficulty with hearing, cataracts, and arthritis were the common independent risk factors for falls in older Chinese men and women. Among men, age ≥80 years (aOR=1.86), never doing housework (aOR=1.36), and dyslipidemia (aOR=1.47) were risk factors, while eating milk products once a week was a protective factor. Alcohol consumption (aOR=1.40), physical labor (aOR=1.28), and heart disease (aOR=1.21) were risk factors for falls in women, while a daily sleep duration of 6-12 h and garlic consumption once a week were protective factors. The prevalence of falls among older adults in China is 21.6% and is greater in women than in men. These risk and protective factors can be used to formulate reasonable recommendations for living habits, diet, and chronic disease control strategies.

20.
Nat Cancer ; 5(1): 167-186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168935

RESUMEN

Onco-fetal reprogramming of the tumor ecosystem induces fetal developmental signatures in the tumor microenvironment, leading to immunosuppressive features. Here, we employed single-cell RNA sequencing, spatial transcriptomics and bulk RNA sequencing to delineate specific cell subsets involved in hepatocellular carcinoma (HCC) relapse and response to immunotherapy. We identified POSTN+ extracellular matrix cancer-associated fibroblasts (EM CAFs) as a prominent onco-fetal interacting hub, promoting tumor progression. Cell-cell communication and spatial transcriptomics analysis revealed crosstalk and co-localization of onco-fetal cells, including POSTN+ CAFs, FOLR2+ macrophages and PLVAP+ endothelial cells. Further analyses suggest an association between onco-fetal reprogramming and epithelial-mesenchymal transition (EMT), tumor cell proliferation and recruitment of Treg cells, ultimately influencing early relapse and response to immunotherapy. In summary, our study identifies POSTN+ CAFs as part of the HCC onco-fetal niche and highlights its potential influence in EMT, relapse and immunotherapy response, paving the way for the use of onco-fetal signatures for therapeutic stratification.


Asunto(s)
Carcinoma Hepatocelular , Receptor 2 de Folato , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Ecosistema , Células Endoteliales , Movimiento Celular/genética , Enfermedad Crónica , Recurrencia , Inmunoterapia , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA