Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.313
Filtrar
1.
Chem Sci ; 15(26): 10002-10009, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966370

RESUMEN

Bench-stable 3,3-difluoroallyl sulfonium salts (DFASs), featuring tunable activity and their editable C-ß and gem-difluoroallyl group, proved to be versatile fluoroalkylating reagents for site-selective S-gem-difluoroallylation of cysteine residues in unprotected peptides. The reaction proceeds with high efficiency under mild conditions (ambient temperature and aqueous and weak basic conditions). Various protected/unprotected peptides, especially bioactive peptides, are site-selectively S-gem-difluoroallylated. The newly added gem-difluoroallyl group and other functional groups derived from C-ß of DFASs are poised for ligation with bio-functional groups through click and radical chemistry. This stepwise "doubly orthogonal" modification of peptides enables the construction of bioconjugates with enhanced complexity and functionality. This proof of principle is successfully applied to construct a peptide-saccharide-biotin chimeric bioconjugate, indicating its great potential application in medicinal chemistry and chemical biology.

2.
Apoptosis ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014119

RESUMEN

Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.

3.
Science ; 385(6704): 68-74, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963855

RESUMEN

Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.

4.
Mater Horiz ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967543

RESUMEN

Flexible polyurethane foam (FPUF) is a ubiquitous material utilized in furniture cushions, mattresses, and various technical applications. Despite the widespread use, FPUF faces challenges in maintaining long-lasting flame retardancy and aging resistance, particularly in harsh environments, while retaining mechanical robustness. Here, we present a novel approach to address these issues by enhancing FPUF through multiple free-radical-trapping and hydrogen-bonding mechanisms. A hindered amine phosphorus-containing polyol (DTAP) was designed and chemically introduced into FPUF. The distinctive synergy between hindered amine and phosphorus-containing structures enables the formation of multiple hydrogen bonds with urethane, while also effectively capturing free radicals across a broad temperature spectrum. As a result, incorporating only 5.1 wt% of DTAP led to the material successfully passing vertical burning tests and witnessing notable enhancements in tensile strength, elongation at break, and tear strength. Even after enduring accelerated thermal aging for 168 hours, the foam maintained exceptional flame retardancy and mechanical properties. This study offers novel insights into material enhancement, simultaneously achieving outstanding long-lasting flame retardancy, toughness, and anti-aging performance.

5.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847772

RESUMEN

Despite the synthetic versatility of difluorocarbene, its high reactivity severely regulates widespread applications of difluorocarbene in organic synthesis. Here, we report a copper difluorocarbene-involved catalytic coupling, representing a new mode of the difluoromethylation reaction. This method allows difluoromethylation of a wide range of readily available allyl/propargyl electrophiles with NaBH3CN and low-cost difluorocarbene precursor BrCF2CO2K, featuring high cost-efficiency, high stereo- and regioselectivities, and high functional group tolerance, even with complex drug-like molecules. Applying the method led to the efficient synthesis of deuterated difluoromethylated compounds of medicinal interest. The resulting difluoromethylated allyl and allenyl products can serve as versatile synthons for diverse transformations, rendering the approach attractive for synthesizing complex fluorinated structures. Experimental mechanistic studies and computational calculations reveal that the formation of a difluoromethylcopper(I) intermediate through the nucleophilic attack of boron hydride on the copper(I) difluorocarbene is the key step in the reaction.

6.
Cyborg Bionic Syst ; 5: 0128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938902

RESUMEN

Brain-inspired navigation technologies combine environmental perception, spatial cognition, and target navigation to create a comprehensive navigation research system. Researchers have used various sensors to gather environmental data and enhance environmental perception using multimodal information fusion. In spatial cognition, a neural network model is used to simulate the navigation mechanism of the animal brain and to construct an environmental cognition map. However, existing models face challenges in achieving high navigation success rate and efficiency. In addition, the limited incorporation of navigation mechanisms borrowed from animal brains necessitates further exploration. On the basis of the brain-inspired navigation process, this paper launched a systematic study on brain-inspired environment perception, brain-inspired spatial cognition, and goal-based navigation in brain-inspired navigation, which provides a new classification of brain-inspired cognition and navigation techniques and a theoretical basis for subsequent experimental studies. In the future, brain-inspired navigation technology should learn from more perfect brain-inspired mechanisms to improve its generalization ability and be simultaneously applied to large-scale distributed intelligent body cluster navigation. The multidisciplinary nature of brain-inspired navigation technology presents challenges, and multidisciplinary scholars must cooperate to promote the development of this technology.

7.
J Hazard Mater ; 476: 134873, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908182

RESUMEN

Xanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples. This method uses sulfur (S2-) dissociation, followed by tandem solid phase extraction of C18 + PWAX and subsequent LC-MS/MS analysis. It has a wide linearity range (1-1000 µg/L, R2 ≥ 0.995), low method detection limits (0.002-0.036 µg/L), and good recoveries (70.6-107.0 %) at 0.01-10 mg/L of xanthates. Applications of this method showed ubiquitous occurrence of the metal-xanthate complexes as the primary species in flotation wastewaters, which the concentrations were 4.6-28.9-fold higher than those previously determined. It is the first quantitative method established for the analysis of metal-xanthate complexes in water samples, which is of great importance to comprehensively understand the fate and risks of xanthates in the environment.

8.
Front Immunol ; 15: 1401528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881902

RESUMEN

CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.


Asunto(s)
Antígeno CD24 , Neoplasias , Humanos , Antígeno CD24/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Animales , Terapia Molecular Dirigida
9.
Int J Biol Macromol ; 273(Pt 2): 132811, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825282

RESUMEN

Atmospheric drying method for fabricating aerogels is considered the most promising way for casting aerogels on a large scale. However, the organic solvent exchange, remaining environmental pollution risk, is a crucial step in mitigating the impact of surface tension during the atmospheric drying process, especially for wet gel formed through the alkoxy-derived sol-gel process, such as melamine-formaldehyde resin (MF) aerogel. Herein, a tough polymer-assisted in situ polymerization was proposed to fabricate MF resin aerogel with a combination of mechanical toughness and strength, enabling it to withstand the capillary force during water evaporation. The monolithic MF resin aerogel through the sol-gel method can be directly prepared without additional network strengthening or organic solvent exchange. The resulting MF resin aerogel exhibits a homogeneous as well as hierarchical structure with macropores and mesopores (~6 µm and ~5 nm), high compressive modulus of 31.8 MPa, self-extinguishing property, and high-temperature thermal insulation with 97 % heat decrease for butane flame combustion. This work presents a straightforward and environmentally friendly method for fabricating MF resin aerogels with nanostructures and excellent performance in open conditions, exhibiting various applications.


Asunto(s)
Retardadores de Llama , Geles , Triazinas , Triazinas/química , Geles/química , Presión , Solventes/química , Resinas Sintéticas/química , Desecación/métodos , Porosidad , Polimerizacion
10.
Sci Total Environ ; 946: 174207, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38914327

RESUMEN

Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.


Asunto(s)
Biodegradación Ambiental , Dibutil Ftalato , Ribosomas , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Dibutil Ftalato/metabolismo , Ribosomas/metabolismo , Microbiología del Suelo , Expresión Génica , Burkholderiaceae/metabolismo , Burkholderiaceae/genética
11.
Sci Rep ; 14(1): 13099, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849443

RESUMEN

The aim of the study was to analyze the change trend of serum ALP over time and identify factors influencing its levels in peritoneal dialysis patients. Then to investigate the impact of serum ALP changes on calcium and phosphorus metabolism in single peritoneal dialysis center utilizing repeated measurement data. A retrospective cohort study was conducted with a total follow-up duration of 30 months. Serum ALP and other biomarkers, including calcium (Ca), phosphorus (P), 25(OH)D, intact parathyroid hormone (iPTH), albumin(ALB), and hemoglobin(Hb) were measured every 3 months. The generalized estimation equation (GEE) was utilized to analyze the change trend of serum ALP over time, and to assess whether there were differences in changes over time between different genders and different primary disease groups. Additionally, factors influencing serum ALP levels were analyzed, and the impact of serum ALP changes on calcium and phosphorus metabolism was also explored. A total of 34 patients were included in the study. Serum ALP and other indicators were measured repeatedly, with a maximum of 8 times and a minimum of 4 times. The median of serum ALP values at all measurement times for all selected patients was 89 U/L. The GEE analysis revealed that serum ALP gradually increased with time, and patients in diabetes group increased faster than those in non-diabetes group. A positive correlation was observed between serum ALP and dialysis duration, also between serum ALP and hemoglobin. However, variations in serum ALP did not significantly affect serum corrected calcium, phosphorus, or iPTH concentrations. The serum ALP levels of peritoneal dialysis patients increase gradually over time, and the concentrations are influenced by dialysis duration. The changes in serum ALP values do not have a significant impact on serum calcium, phosphorus, and iPTH levels.


Asunto(s)
Fosfatasa Alcalina , Biomarcadores , Calcio , Diálisis Peritoneal , Fósforo , Humanos , Masculino , Femenino , Persona de Mediana Edad , Fosfatasa Alcalina/sangre , Fósforo/sangre , Estudios Longitudinales , Calcio/sangre , Estudios Retrospectivos , Biomarcadores/sangre , Adulto , Hormona Paratiroidea/sangre , Anciano
12.
Sci Rep ; 14(1): 13234, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853174

RESUMEN

The ionosphere can be artificially modified by employing ground-based high-power high-frequency electromagnetic waves to irradiate the ionosphere. This modification is achieved through the nonlinear interaction between the electromagnetic waves and the ionospheric plasma, leading to changes in the physical properties and structure of the ionosphere. The degree of artificial modification of the ionosphere is closely related to the heating energy density of high-frequency pump waves. Due to the high density of neutral constituents in the lower ionosphere and the high frequency of electron-neutral collisions, the energy of heating pump waves will be absorbed and attenuated during the penetration of the low ionosphere, seriously affecting the heating effect. This paper proposes a method to reduce the absorption of ionospheric heating pump waves by releasing electron attachment chemicals into low ionosphere to form a large-scale electron density hole. A model for mitigating pump waves absorption based on SF6 release is established, and the absorption at different frequencies is quantitatively calculated. The propagation characteristics of high-frequency signals in ionospheric holes are studied using a three-dimensional ray tracing method, and the results demonstrate that the chemical release method not only reduces the absorption attenuation of heating pump waves but also forms spherical electron density holes, which exhibit a focusing effect on the heating beam and enhance the heating effect. The results are of great significance for understanding the nonlinear interaction between electromagnetic wave and ionospheric plasma and improving the ionospheric heating efficiency.

13.
Nat Commun ; 15(1): 4473, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796488

RESUMEN

Assessing failure pressure is critical in determining pipeline integrity. Current research primarily concerns the buckling performance of pressurized pipelines subjected to a bending load or axial compression force, with some also looking at the failure pressure of corroded pipelines. However, there is currently a lack of limit state models for pressurized pipelines with bending moments and axial forces. In this study, based on the unified yield criterion, we propose a limit state equation for steel pipes under various loads. The most common operating loads on buried pipelines are bending moment, internal pressure, and axial force. The proposed limit state equation for intact pipelines is based on a three-dimensional pipeline stress model with complex load coupling. Using failure data, we investigate the applicability of various yield criteria in assessing the failure pressure of pipelines with complex loads. We show that the evaluation model can be effectively used as a theoretical solution for assessing the failure pressure in such circumstances and for selecting appropriate yield criteria based on load condition differences.

14.
iScience ; 27(6): 109893, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799560

RESUMEN

Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.

15.
Cell Commun Signal ; 22(1): 249, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693584

RESUMEN

Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Cobre/metabolismo , Animales , Transducción de Señal , Muerte Celular
16.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745965

RESUMEN

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

17.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786674

RESUMEN

Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.

18.
Int J Biol Macromol ; 269(Pt 2): 132135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719000

RESUMEN

Here, a novel multifunctional coating containing bio-based phytic acid (PA), L-glutamic acid (L-Glu), and trimesoyl chloride (TMC) is constructed by a simple soaking strategy, giving cotton fabrics excellent flame retardancy, washability, and antibacterial properties. The coating layer on the cotton surface was prepared via the electrostatic and hydrogen bonding between PA and L-Glu, accompanied by the interface polymerization between PA, L-Glu, and TMC. Among them, the limiting oxygen index value of the treated cotton fabrics (C2 and C2-TMC) was as high as 40 %. During the vertical flammability test, both C2 and C2-TMC cotton showed self-extinguished behavior with a short damaged length (≤50 mm). Remarkably, the LOI of C2-TMC sustained a high value (30 %) even after 300 laundering cycles, maintaining its self-extinguishing behavior in the vertical combustion test. Additionally, in the cone calorimetry test, peak heat release rate and total heat release of treated cotton were lower than control cotton. Surprisingly, after 30 or 60 laundering cycles, the C2-TMC cotton exhibited excellent antibacterial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans due to the continuous exposure of PA and L-Glu. Moreover, the coating layer on the cotton surface had little impact on the mechanical properties and feel of the fabric.


Asunto(s)
Fibra de Algodón , Retardadores de Llama , Ácido Fítico , Ácido Fítico/química , Ácido Fítico/farmacología , Aminoácidos/química , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Textiles , Pruebas de Sensibilidad Microbiana
19.
Commun Biol ; 7(1): 581, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755313

RESUMEN

Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.


Asunto(s)
Epigenómica , Genoma de Planta , Reproducción Asexuada , Selección Genética , Reproducción Asexuada/genética , Epigenómica/métodos , Metilación de ADN , Evolución Biológica , Variación Genética , Araceae/genética , Evolución Molecular , Genómica/métodos
20.
Mater Horiz ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742392

RESUMEN

Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA