Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
1.
Phys Rev Lett ; 133(8): 087001, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39241722

RESUMEN

Under certain symmetry-breaking conditions, a superconducting system exhibits asymmetric critical currents, dubbed the "superconducting diode effect." Recently, systems with the ideal superconducting diode efficiency or unidirectional superconductivity have received considerable interest. In this work, we report the study of Al-InAs nanowire-Al Josephson junctions under microwave irradiation and magnetic fields. We observe an enhancement of superconducting diode effect under microwave driving, featured by a horizontal offset of the zero-voltage step in the voltage-current characteristic that increases with microwave power. Devices reach the unidirectional superconductivity regime at sufficiently high driving amplitudes. The offset changes sign with the reversal of the magnetic field direction. Meanwhile, the offset magnitude exhibits a roughly linear response to the microwave power in dBm when both the power and the magnetic field are large. The signatures observed are reminiscent of a recent theoretical proposal using the resistively shunted junction (RSJ) model. However, the experimental results are not fully explained by the RSJ model, indicating a new mechanism for unidirectional superconductivity that is possibly related to nonequilibrium dynamics or dissipation in periodically driven superconducting systems.

2.
Sci Rep ; 14(1): 21477, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277666

RESUMEN

To investgate the effects of potassium (K) application on the agronomic traits and fruit quality of Lycium barbarum L. (Goji), three levels of K fertilizer, namely LK (25 g/plant), CK (50 g/plant), and HK (75 g/plant), were applied to plants in phytotron for observing and measuring relevant indicators. The investigation involved seven agronomic traits: plant height, plant stem diameter, new branch increment, yield of fresh fruits per plant, dry fruit quantity within 50 g, ratio of different grade fruits, and ratio of longitudinal diameter to transverse diameter of Goji fruits. The results showed that K application level had significant effect on ratio of the longitudinal diameter to the transverse diameter of fresh Goji fruits, and that the influence on other agronomic traits was slight. In the meanwhile, the concentrations of amino acids, betaine, polysaccharides and flavonoids of Goji fruits in different levels of K fertilizer were tested. The K treatment increased the content of glutamic acid, and decreased that of flavonoids (P < 0.05), whereas the content of other amino acids, polysaccharides and betaine were unaffected. A total of 132 flavonoid metabolites was identified. Among them, K treatment up-regulated 36 metabolites and down-regulated 30 metabolites (P < 0.05). The results provided a basis for balanced K supply to regulate the agronomic traits and nutrients of Goji fruits.


Asunto(s)
Fertilizantes , Frutas , Lycium , Potasio , Lycium/crecimiento & desarrollo , Lycium/metabolismo , Potasio/metabolismo , Potasio/análisis , Frutas/metabolismo , Frutas/efectos de los fármacos , Fertilizantes/análisis , Flavonoides/análisis , Flavonoides/metabolismo
3.
Nat Commun ; 15(1): 8184, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294158

RESUMEN

New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to ß-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the ß-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the ß pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.


Asunto(s)
Microscopía por Crioelectrón , Chaperonas Moleculares , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Modelos Moleculares , Células HEK293 , Sistemas CRISPR-Cas
4.
BMC Infect Dis ; 24(1): 1075, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350058

RESUMEN

Gallibacterium anatis (G. anatis) is an opportunistic pathogen previously associated with deaths in poultry and is also a pathogen that rarely causes human diseases. G. anatis has only been reported twice as the causative agent of a human disease (both in France). Here, we report a 62-year-old male patient with hypertension and type 2 diabetes who suffered from acute watery diarrhea caused by this bacterium which was identified by MALDI-TOF MS and 16 S rRNA sequencing. Despite human diarrhea caused by G.anatis is rare, with the continuous emergence of multidrug-resistant isolates of G. anatis in recent years, this case report will inform clinicians that G. anatis especially drug-resistant G. anatis may be a possible infectious source of human diarrhea in immune-suppressed populations.


Asunto(s)
Diarrea , Infecciones por Pasteurellaceae , Pasteurellaceae , ARN Ribosómico 16S , Humanos , Masculino , Diarrea/microbiología , Persona de Mediana Edad , Infecciones por Pasteurellaceae/microbiología , ARN Ribosómico 16S/genética , Pasteurellaceae/aislamiento & purificación , Pasteurellaceae/genética , Pasteurellaceae/clasificación , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/microbiología , Antibacterianos/uso terapéutico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Hipertensión/complicaciones
5.
bioRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39211201

RESUMEN

New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. To understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observed an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to ß-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the ß-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the ß pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.

6.
Environ Pollut ; 360: 124718, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39163945

RESUMEN

Coronary artery disease (CAD) is often accompanied by abnormal cardiac structure and function, leading to an increased prognostic risk. However, less is known about the associations of mixed metals with abnormal cardiac structure and function in CAD patients. Here, we aimed to investigate the associations of exposure to metal mixtures with cardiac structure and function and potential interactions in a CAD population. We conducted a cross-sectional study from Southwest China that included 1555 CAD patients. The blood concentrations of 14 metals were measured via inductively coupled plasma spectrometry. CAD was defined as at least one vessel having stenosis ≥50% the vessel diameter. Echocardiography was used for cardiac structural and functional measurements. Bayesian kernel machine regression was applied to explore the overall effect, metal weight, and dose effect. Linear regression analysis was used to analyze the effects of single metals, metal‒metal interactions and metal‒traditional interactions. Finally, we found that the negative associations of mixed metals with cardiac structure was significant when the levels of all metals were below the 60th percentile. For cardiac function, changes in metals from 50th to 75th were associated with 0.954% and 0.683% decrease in left ventricular ejection fraction and left ventricular fractional shortening, respectively. Negative associations of copper and manganese with cardiac structure and function, whereas positive associations of titanium, selenium and molybdenum with several parameters were found. Antagonistic interactions between copper and tin and between selenium and several metals (manganese, copper and aluminum) (all Pinteraction terms < 0.05) were found. In conclusion, mixed metal exposure was negatively associated with cardiac structure and function in CAD patients. The main metals contributing to this negative associations were copper and manganese. Selenium or tin supplementation may reduce the adverse associations of copper and manganese with cardiac structure and function.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Estudios Transversales , Persona de Mediana Edad , Masculino , Femenino , China , Metales/sangre , Anciano , Corazón/efectos de los fármacos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/sangre
7.
Adv Mater ; 36(36): e2403176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39082207

RESUMEN

Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.g., atomic connection, which results in a large induced superconducting gap and ballistic transport. By comparing with Schrödinger-Poisson calculations, it is proven that this method can vary the band bending/coupling strength and the electronic spatial distribution. In the strong coupling regime, the coexistence and tunability of crossed Andreev reflection and elastic co-tunneling-key ingredients for the Kitaev chain-are confirmed. This method is also generic for other materials and achieves a hard and huge superconducting gap in lead and indium antimonide nanowire (Pb-InSb) devices. Such a versatile method, compatible with the standard fabrication process and accompanied by the well-controlled modification of the interface, will definitely boost the creation of more sophisticated hybrid devices for exploring physics in solid-state systems.

8.
Cells ; 13(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38995009

RESUMEN

We developed an automated microregistration method that enables repeated in vivo skin microscopy imaging of the same tissue microlocation and specific cells over a long period of days and weeks with unprecedented precision. Applying this method in conjunction with an in vivo multimodality multiphoton microscope, the behavior of human skin cells such as cell proliferation, melanin upward migration, blood flow dynamics, and epidermal thickness adaptation can be recorded over time, facilitating quantitative cellular dynamics analysis. We demonstrated the usefulness of this method in a skin biology study by successfully monitoring skin cellular responses for a period of two weeks following an acute exposure to ultraviolet light.


Asunto(s)
Piel , Humanos , Piel/citología , Piel/diagnóstico por imagen , Rayos Ultravioleta , Rastreo Celular/métodos , Proliferación Celular , Movimiento Celular , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Microscopía/métodos
9.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948784

RESUMEN

Mitochondrial creatine kinases are key players in maintaining energy homeostasis in cells by working in conjunction with cytosolic creatine kinases for energy transport from mitochondria to cytoplasm. High levels of MtCK observed in Her2+ breast cancer and inhibition of breast cancer cell growth by substrate analog, cyclocreatine, indicate dependence of cancer cells on the 'energy shuttle' for cell growth and survival. Hence, understanding the key mechanistic features of creatine kinases and their inhibition plays an important role in the development of cancer therapeutics. Herein, we present the mutational and structural investigation on understudied ubiquitous mitochondrial creatine kinase (uMtCK). Our cryo-EM structures and biochemical data on uMtCK showed closure of the loop comprising residue His61 is specific to and relies on creatine binding and the reaction mechanism of phosphoryl transfer depends on electrostatics in the active site. In addition, the previously identified covalent inhibitor CKi showed inhibition in breast cancer BT474 cells, however our biochemical and structural data indicated that CKi is not a potent inhibitor for breast cancer due to strong dependency on the covalent link formation and inability to induce conformational changes upon binding.

10.
Front Oncol ; 14: 1320220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962264

RESUMEN

Background: Our previous studies have demonstrated that Raman spectroscopy could be used for skin cancer detection with good sensitivity and specificity. The objective of this study is to determine if skin cancer detection can be further improved by combining deep neural networks and Raman spectroscopy. Patients and methods: Raman spectra of 731 skin lesions were included in this study, containing 340 cancerous and precancerous lesions (melanoma, basal cell carcinoma, squamous cell carcinoma and actinic keratosis) and 391 benign lesions (melanocytic nevus and seborrheic keratosis). One-dimensional convolutional neural networks (1D-CNN) were developed for Raman spectral classification. The stratified samples were divided randomly into training (70%), validation (10%) and test set (20%), and were repeated 56 times using parallel computing. Different data augmentation strategies were implemented for the training dataset, including added random noise, spectral shift, spectral combination and artificially synthesized Raman spectra using one-dimensional generative adversarial networks (1D-GAN). The area under the receiver operating characteristic curve (ROC AUC) was used as a measure of the diagnostic performance. Conventional machine learning approaches, including partial least squares for discriminant analysis (PLS-DA), principal component and linear discriminant analysis (PC-LDA), support vector machine (SVM), and logistic regression (LR) were evaluated for comparison with the same data splitting scheme as the 1D-CNN. Results: The ROC AUC of the test dataset based on the original training spectra were 0.886±0.022 (1D-CNN), 0.870±0.028 (PLS-DA), 0.875±0.033 (PC-LDA), 0.864±0.027 (SVM), and 0.525±0.045 (LR), which were improved to 0.909±0.021 (1D-CNN), 0.899±0.022 (PLS-DA), 0.895±0.022 (PC-LDA), 0.901±0.020 (SVM), and 0.897±0.021 (LR) respectively after augmentation of the training dataset (p<0.0001, Wilcoxon test). Paired analyses of 1D-CNN with conventional machine learning approaches showed that 1D-CNN had a 1-3% improvement (p<0.001, Wilcoxon test). Conclusions: Data augmentation not only improved the performance of both deep neural networks and conventional machine learning techniques by 2-4%, but also improved the performance of the models on spectra with higher noise or spectral shifting. Convolutional neural networks slightly outperformed conventional machine learning approaches for skin cancer detection by Raman spectroscopy.

11.
Adv Mater ; 36(36): e2406347, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38926947

RESUMEN

Electrical generation and transduction of polarized electron spins in semiconductors (SCs) are of central interest in spintronics and quantum information science. While spin generation in SCs is frequently realized via electrical injection from a ferromagnet (FM), there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay of electron spin with chirality in electronic structures or real space. Here, utilizing chirality-induced spin selectivity (CISS), the efficient creation of spin accumulation in n-doped GaAs via electric current injection from a normal metal (Au) electrode through a self-assembled monolayer (SAM) of chiral molecules (α-helix l-polyalanine, AHPA-L), is demonstrated. The resulting spin polarization is detected as a Hanle effect in the n-GaAs, which is found to obey a distinct universal scaling with temperature and bias current consistent with chirality-induced spin accumulation. The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure and demonstration of its ability to generate spin accumulation in a conventional SC. The results thus place key constraints on the physical mechanism of CISS and present a new scheme for magnet-free SC spintronics.

12.
Front Plant Sci ; 15: 1392175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736439

RESUMEN

Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.

13.
Food Res Int ; 183: 114202, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760133

RESUMEN

Pixian broad bean paste is a renowned fermented seasoning. The fermentation of broad bean is the most important process of Pixian broad bean paste. To enhance the flavor of tank-fermented broad bean paste, salt-tolerant Bacillus amyloliquefaciens strain was inoculated, resulting in an increase in total amount of volatile compounds, potentially leading to different flavor characteristics. To investigate the fermentation mechanism, monoculture simulated fermentation systems were designed. Metabolomics and transcriptomics were used to explore Bacillus amyloliquefaciens' transcriptional response to salt stress and potential aroma production mechanisms. The results highlighted different metabolite profiles under salt stress, and the crucial roles of energy metabolism, amino acid metabolism, reaction system, transportation system in Bacillus amyloliquefaciens' hypersaline stress response. This study provides a scientific basis for the industrial application of Bacillus amyloliquefaciens and new insights into addressing the challenges of poor flavor quality in tank fermentation products.


Asunto(s)
Bacillus amyloliquefaciens , Fermentación , Metabolómica , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Transcriptoma , Microbiología de Alimentos , Alimentos Fermentados/microbiología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Perfilación de la Expresión Génica , Gusto , Fabaceae/microbiología
15.
Front Plant Sci ; 15: 1355832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721340

RESUMEN

Lycium barbarum L., commonly known as wolfberry, is not only a traditional Chinese medicine but also a highly nutritious food. Its main nutrients include L. barbarum polysaccharide, flavonoid polyphenols, carotenoids, alkaloids, and other compounds, demonstrating its wide application value. This study investigated the effects of nitrogen application on the accumulation of the main nutrients and metabolites in wolfberry fruits under three different nitrogen application rates, namely, N1 (20% nitrogen (N) reduction, 540 kg·ha-2), N2 (medium N, 675 kg·ha-2), and N3 (20% nitrogen increase, 810 kg·ha-2,which is a local conventional nitrogen application amount.). Additionally, due to continuous branching, blossoming, and fruiting of wolfberry plants during the annual growth period, this research also explored the variation in nutritional composition among different harvesting batches. The contents of total sugar and polysaccharide in wolfberry fruit were determined by Fehling reagent method and phenol-sulfuric acid method, respectively;The content of betaine in fruit was determined by high-performance liquid chromatography,and the flavonoids and carotene in the wolfberry fruits were determined by spectrophotometry. Analysis of data over three consecutive years revealed that as nitrogen application increased, the total sugar content in wolfberry fruits initially decreased and then increased. The levels of L. barbarum polysaccharides, total flavonoids, and total carotenoids initially increased and then decreased, while the betaine content consistently increased. Different picking batches significantly impacted the nutrient content of wolfberry fruits. Generally, the first batch of summer wolfberry fruits had greater amounts of total sugar and flavonoids, whereas other nutrients peaked in the third batch. By employing a broadly targeted metabolomics approach, 926 different metabolites were identified. The top 20 differentially abundant metabolites were selected for heatmap generation, revealing that the contents of L-citrulline, 2-methylglutaric acid, and adipic acid increased proportionally to the nitrogen gradient. Conversely, the dibutyl phthalate and 2, 4-dihydroxyquinoline contents significantly decreased under high-nitrogen conditions. The remaining 15 differentially abundant metabolites, kaempferol-3-O-sophorosid-7-O-rhamnoside, trigonelline, and isorhamnosid-3-O-sophoroside, initially increased and then decreased with increasing nitrogen levels. Isofraxidin, a common differentially abundant metabolite across all treatments, is a coumarin that may serve as a potential biomarker for wolfberry fruit response to nitrogen. Differentially abundant metabolites were analyzed for GO pathway involvement, revealing significant enrichment in metabolic pathways and biosynthesis of secondary metabolites under different nitrogen treatments. In conclusion, a nitrogen application of 675 kg·ha-2, 20% less than the local farmers' actual application, was most beneficial for the quality of four-year-old Ningqi 7 wolfberry fruits. Consumers who purchase wolfberry-dried fruit for health benefits should not consider only the first batch of summer wolfberry fruits. These results offer a broader perspective for enhancing the quality and efficiency of the wolfberry industry.

17.
J Am Heart Assoc ; 13(9): e033474, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38700020

RESUMEN

BACKGROUND: Copper exposure is reported to be associated with increased risk of stroke. However, the association of copper exposure with subclinical carotid atherosclerosis remains unclear. METHODS AND RESULTS: This observational study included consecutive participants from Xinqiao Hospital between May 2020 and August 2021. Blood metals were measured using inductively coupled plasma mass spectrometry and carotid atherosclerosis was assessed using ultrasound. Modified Poisson regression was performed to evaluate the associations of copper and other metals with subclinical carotid plaque presence. Blood metals were analyzed as categorical according to the quartiles. Multivariable models were adjusted for age, sex, body mass index, education, smoking, drinking, hypertension, diabetes, dyslipidemia, estimated glomerular filtration rate, and coronary artery disease history. Bayesian Kernel Machine Regression was conducted to evaluate the overall association of metal mixture with subclinical carotid plaque presence. One thousand five hundred eighty-five participants were finally enrolled in our study, and carotid plaque was found in 1091 subjects. After adjusting for potential confounders, metal-progressively-adjusted models showed that blood copper was positively associated with subclinical carotid plaque (relative risk according to comparing quartile 4 to quartile 1 was 1.124 [1.021-1.238], relative risk according to per interquartile increment was 1.039 [1.008-1.071]). Blood cadmium and lead were also significantly associated with subclinical carotid plaque. Bayesian Kernel Machine Regression analyses suggested a synergistic effect of copper-cadmium-lead mixture on subclinical carotid plaque presence. CONCLUSIONS: Our findings identify copper as a novel risk factor of subclinical carotid atherosclerosis and show the potential synergistic proatherogenic effect of copper, cadmium, and lead mixture.


Asunto(s)
Enfermedades de las Arterias Carótidas , Cobre , Humanos , Femenino , Masculino , Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/epidemiología , Cobre/sangre , Persona de Mediana Edad , Factores de Riesgo , Anciano , Placa Aterosclerótica/sangre , Cadmio/sangre , Medición de Riesgo , China/epidemiología , Biomarcadores/sangre , Enfermedades Asintomáticas , Plomo/sangre
18.
ACS Appl Mater Interfaces ; 16(21): 27944-27951, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38764370

RESUMEN

Manipulating magnetization via power-efficient spin-orbit torque (SOT) has garnered significant attention in the field of spin-based memory and logic devices. However, the damping-like SOT efficiency (ξDL) in heavy metal (HM)/ferromagnetic metal (FM) bilayers is relatively small due to the strong spin dephasing accompanied by additional spin polarization decay. Furthermore, the perpendicular magnetic anisotropy (PMA) originating from the HM/FM interface is constrained by the thickness of FM, which is unfavorable for thermal stability in practical applications. Consequently, it is valuable to develop systems that not only exhibit large ξDL but also balance thermal stability. In this work, we designed antiferromagnetic-coupled [Co/Gd]N multilayers, where staggered Co and Gd magnetic moments effectively suppress the spin dephasing and additional spin polarization decay. The ordered Co-Gd arrangements along the out-of-plane direction provide bulk PMA, endowing Pt/[Co/Gd]N high thermal stability. The SOT of Pt/[Co/Gd]N was systematically studied with N, demonstrating a significantly large ξDL of up to 0.66. The ξDL of Pt/[Co/Gd]N is greater than those of Pt/Co and Pt/ferrimagnetic alloys. This significant enhancement relies on the effective suppression of spin dephasing in [Co/Gd]N. Our work highlights that the antiferromagnetic-coupled [Co/Gd]N multilayer is a promising candidate for low-consumption and high-density spintronic devices.

19.
Phytomedicine ; 129: 155612, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669968

RESUMEN

BACKGROUND: Colorectal cancer (CRC) continues to be a major global health challenge, ranking as a top cause of cancer-related mortality. Alarmingly, the five-year survival rate for CRC patients hovers around a mere 10-30 %. The disruption of fibroblast growth factor receptor (FGFRs) signaling pathways is significantly implicated in the onset and advancement of CRC, presenting a promising target for therapeutic intervention in CRC management. Further investigation is essential to comprehensively elucidate FGFR1's function in CRC and to create potent therapies that specifically target FGFR1. PURPOSE: This study aims to demonstrate the oncogenic role of FGFR1 in colorectal cancer and to explore the potential of ß,ß-dimethylacrylalkannin (ß,ß-DMAA) as a therapeutic option to inhibit FGFR1. METHODS: In this research, we employed a comprehensive suite of techniques including tissue array, kinase profiling, computational docking, knockdown assay to predict and explore the inhibitor of FGFR1. Furthermore, we utilized kinase assay, pull-down, cell proliferation tests, and Patient derived xenograft (PDX) mouse models to further investigate a novel FGFR1 inhibitor and its impact on the growth of CRC. RESULTS: In our research, we discovered that FGFR1 protein is markedly upregulated in colorectal cancer tissues, suggesting a significant role in regulating cellular proliferation, particularly in patients with colorectal cancer. Furthermore, we conducted a computational docking, kinase profiling analysis, simulation and identified that ß,ß-DMAA could directly bind with FGFR1 within ATP binding pocket domain. Cell-based assays confirmed that ß,ß-DMAA effectively inhibited the proliferation of colon cancer cells and also triggered cell cycle arrest, apoptosis, and altered FGFR1-mediated signaling pathways. Moreover, ß,ß-DMAA effectively attenuated the development of PDX tumors in mice that were FGFR1-positive, with no notable toxicity observed. In summary, our study highlights the pivotal role of FGFR1 in colorectal cancer, suggesting that inhibiting FGFR1 activity could be a promising strategy for therapeutic intervention. We present strong evidence that targeting FGFR1 with ß,ß-DMAA is a viable approach for the management of colorectal cancer. Given its low toxicity and high efficacy, ß,ß-DMAA, as an FGFR1 inhibitor, warrants further investigation in clinical settings for the treatment of FGFR1-positive tumors.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Animales , Femenino , Humanos , Ratones , Acrilamidas/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Yi Chuan ; 46(4): 266-278, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632090

RESUMEN

RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes, which plays vital roles in plant development and response to biotic and abiotic stresses. The discovery of trans-kingdom RNAi and interspecies RNAi provides a theoretical basis for exploiting RNAi-based crop protection strategies. Here, we summarize the canonical RNAi mechanisms in plants and review representative studies associated with plant-pathogen interactions. Meanwhile, we also elaborate upon the principles of host-induced gene silencing, spray-induced gene silencing and microbe-induced gene silencing, and discuss their applications in crop protection, thereby providing help to establish novel RNAi-based crop protection strategies.


Asunto(s)
Protección de Cultivos , Plantas , Interferencia de ARN , Plantas/genética , Eucariontes/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA