Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.855
Filtrar
1.
Gut ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724220

RESUMEN

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.

2.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757304

RESUMEN

Gut microbiota dysfunction is a key factor affecting chronic kidney disease (CKD) susceptibility. Puerariae lobatae Radix (PLR), a traditional Chinese medicine and food homologous herb, is known to promote the gut microbiota homeostasis; however, its role in renoprotection remains unknown. The present study aimed to investigate the efficacy and potential mechanism of PLR to alleviate CKD. An 8­week 2% NaCl­feeding murine model was applied to induce CKD and evaluate the therapeutic effect of PLR supplementary. After gavage for 8 weeks, The medium and high doses of PLR significantly alleviated CKD­associated creatinine, urine protein increasement and nephritic histopathological injury. Moreover, PLR protected kidney from fibrosis by reducing inflammatory response and downregulating the canonical Wnt/ß­catenin pathway. Furthermore, PLR rescued the gut microbiota dysbiosis and protected against high salt­induced gut barrier dysfunction. Enrichment of Akkermansia and Bifidobacterium was found after PLR intervention, the relative abundances of which were in positive correlation with normal maintenance of renal histology and function. Next, fecal microbiota transplantation experiment verified that the positive effect of PLR on CKD was, at least partially, exerted through gut microbiota reestablishment and downregulation of the Wnt/ß­catenin pathway. The present study provided evidence for a new function of PLR on kidney protection and put forward a potential therapeutic strategy target for CKD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Pueraria , Insuficiencia Renal Crónica , Vía de Señalización Wnt , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Pueraria/química , Modelos Animales de Enfermedad , Disbiosis/tratamiento farmacológico , Regulación hacia Abajo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal
3.
Plants (Basel) ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732469

RESUMEN

During the period preceding the vegetation growing season (GS), temperature emerges as the pivotal factor determining phenology in northern terrestrial ecosystems. Despite extensive research on the impact of daily mean temperature (Tmean) during the preseason period, the influence of diurnal temperature range (DTR) on vegetation photosynthetic phenology (i.e., the impact of the plant photosynthetic cycle on seasonal time scale) has largely been neglected. Using a long-term vegetation photosynthetic phenology dataset and historical climate data, we examine vegetation photosynthetic phenology dynamics and responses to climate change across the mid-high latitudes of the Northern Hemisphere from 2001 to 2020. Our data reveal an advancing trend in the start of the GS (SOS) by -0.15 days per year (days yr-1), affecting 72.1% of the studied area. This is particularly pronounced in western Canada, Alaska, eastern Asia, and latitudes north of 60°N. Conversely, the end of the GS (EOS) displays a delaying trend of 0.17 days yr-1, impacting 62.4% of the studied area, especially northern North America and northern Eurasia. The collective influence of an earlier SOS and a delayed EOS has resulted in the notably prolonged length of the GS (LOS) by 0.32 days yr-1 in the last two decades, affecting 70.9% of the studied area, with Eurasia and western North America being particularly noteworthy. Partial correlation coefficients of the SOS with preseason Tmean, DTR, and accumulated precipitation exhibited negative values in 98.4%, 93.0%, and 39.2% of the study area, respectively. However, there were distinct regional variations in the influence of climate factors on the EOS. The partial correlation coefficients of the EOS with preseason Tmean, DTR, and precipitation were positive in 58.6%, 50.1%, and 36.3% of the region, respectively. Our findings unveil the intricate mechanisms influencing vegetation photosynthetic phenology, holding crucial significance in understanding the dynamics of carbon sequestration within terrestrial ecosystems amidst climate change.

4.
ACS Appl Mater Interfaces ; 16(19): 25246-25255, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696547

RESUMEN

Ion transportation via the mixed mechanisms of hydrogels underpins ultrafast biological signal transmission in nature, and its application to the rapid and sensitive sensing detection of human specific ions is of great interest for the field of medical science. However, current research efforts are still unable to achieve transmission results that are comparable to those of bioelectric signals. Herein, 3D interconnected nanochannels based on poly(pyrrole-co-dopamine)/poly(vinyl alcohol) (P(Py-co-DA)/PVA) supernetwork conductive hydrogels are designed and fabricated as stimuli-responsive structures for K+ ions. Distinct from conventional configurations, which exhibit rapid electron transfer and permeability to biosubstrates, interconnected nanofluidic nanochannels collaborated with the P(Py-co-DA) conductive polymer in the supernetwork conductive hydrogel significantly improve conductivity (88.3 mS/cm), ion transport time (0.1 s), and ion sensitivity (74.6 mV/dec). The faster ion response time is attributed to the synergism of excellent conductivity originating from the P(Py-co-DA) polymer and the electronic effect in the interconnected nanofluidic channels. Furthermore, the supernetwork conductive hydrogel demonstrates K+ ion selectivity relative to other cations in biofluids such as Na+, Mg2+, and Ca2+. The DFT calculation indicates that the small solvation energy and low chemical transfer resistance are the main reasons for the excellent K+ ion selectivity. Finite element analysis (FEA) simulations further support these experimental results. Consequently, the P(Py-co-DA)/PVA supernetwork conductive hydrogels enriched with the 3D interconnected nanofluidic channels developed in this work possess excellent sensing of K+ ions. This strategy provides great insight into efficient ion sensing in traditional biomedical sensing that has not been explored by previous researchers.

5.
Front Immunol ; 15: 1382449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745657

RESUMEN

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Asunto(s)
Lesión Pulmonar Aguda , Comunicación Celular , Perfilación de la Expresión Génica , Animales , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Ratones , Humanos , Comunicación Celular/inmunología , Transcriptoma , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/genética , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , COVID-19/inmunología , COVID-19/genética , Transducción de Señal , Masculino , Macrófagos/inmunología , Macrófagos/metabolismo
6.
One Health ; 18: 100735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711479

RESUMEN

Background: Borrelia miyamotoi is a spirochete species transmitted via hard ticks. Following its discovery in Japan, this pathogen has been detected around the world, and is increasingly confirmed as a human pathogen causing febrile disease, namely relapsing fever. Its presence has been confirmed in the Northeast China. However, there is little information regarding the presence of B. miyamotoi and other hard-tick-borne relapsing fever spirochetes in southern China including Yunnan province, where tick and animal species are abundant and many people both inhabit and visit for recreation. Methods: For the present study, we collected samples of ticks, wildlife, and domestic animal hosts from different counties in Yunnan province. Nucleic acids from samples were extracted, and the presence of B. miyamotoi and other relapsing fever spirochetes was confirmed using polymerase chain reaction (PCR) for the 16S rRNA specific target gene fragment. The positive samples were then amplified for partial genome of the flaB and glpQ genes. Statistical differences in its distribution were analyzed by SPSS 20 software. Sequence of partial 16S rRNA, flaB and glpQ genome were analyzed and phylogenetic trees were constructed. Results: A total of 8260 samples including 2304 ticks, 4120 small mammals and 1836 blood of domestic animal hosts were collected for screening for infection of B. miyamotoi and other relapsing fever spirochetes. Cattle and sheep act as the main hosts and Rhipicephalus microplus, Haemaphysalis nepalensis, H. kolonini and Ixodes ovatus were identified as the important vector host with high prevalence or wide distribution. Only one Mus caroli (mouse) and one Sorex alpinus (shrew) were confirmed positive for relapsing fever spirochetes. Evidence of vertical transmission in ticks was also confirmed. Two known strains of B. miyamotoi and one novel relapsing fever spirochetes, B. theileri-like agent, were confirmed and described with their host adaptation, mutation, and potential risk of spreading and spillover for human beings. Conclusions: Our results provide new evidence of relapsing fever spirochetes in vector and animal hosts in Yunnan province based on large sample sizes, and offer guidance on further investigation, surveillance and monitoring of this pathogen.

7.
Pathol Res Pract ; 258: 155330, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38733868

RESUMEN

Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.

9.
Sci Rep ; 14(1): 10432, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714757

RESUMEN

Quantum algorithms have shown their superiority in many application fields. However, a general quantum algorithm for numerical integration, an indispensable tool for processing sophisticated science and engineering issues, is still missing. Here, we first proposed a quantum integration algorithm suitable for any continuous functions that can be approximated by polynomials. More impressively, the algorithm achieves quantum encoding of any integrable functions through polynomial approximation, then constructs a quantum oracle to mark the number of points in the integration area and finally converts the statistical results into the phase angle in the amplitude of the superposition state. The quantum algorithm introduced in this work exhibits quadratic acceleration over the classical integration algorithms by reducing computational complexity from O(N) to O(√N). Our work addresses the crucial impediments for improving the generality of quantum integration algorithm, which provides a meaningful guidance for expanding the superiority of quantum computing.

10.
Angew Chem Int Ed Engl ; : e202405449, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781085

RESUMEN

Accessing versatile C(sp3)-C(sp3) bond through cross-electrophile coupling of two distinct etheric C-O bonds is crucial in organic synthesis but remains barely explored. Herein, we report an innovative photoinduced low-valent zirconocene catalysis enabling the reductive coupling of ethers with high activity and cross-selectivity. Mechanistic investigation suggests that photo-excitation of low-valent zirconocene facilitates the C(sp3)-O bond scission of benzylic ethers, leading to the benzylic radical intermediate via a single electron reduction pathway. The subsequent recombination of this benzylic radical to Zr center followed by carbomagnesiation generates benzylic Grignard reagents for down-stream coupling with aliphatic ethers through a SN2-like mechanism. In application, a wide range of ethers readily in-situ derived from aldehydes and ketones becomes feasible with high functional group compatibility as well as excellent cross-selectivity.

11.
Med ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38781965

RESUMEN

BACKGROUND: Predictive biomarkers and models of immune checkpoint inhibitors (ICIs) have been extensively studied in non-small cell lung cancer (NSCLC). However, evidence for many biomarkers remains inconclusive, and the opaqueness of machine learning models hinders practicality. We aimed to provide compelling evidence for biomarkers and develop a transparent decision tree model. METHODS: We consolidated data from 3,288 ICI-treated patients with NSCLC across real-world multicenter, public cohorts and the Choice-01 trial (ClinicalTrials.gov: NCT03856411). Over 50 features were examined for predicting durable clinical benefits (DCBs) from ICIs. Noteworthy biomarkers were identified to establish a decision tree model. Additionally, we explored the tumor microenvironment and peripheral CD8+ programmed death-1 (PD-1)+ T cell receptor (TCR) profiles. FINDINGS: Multivariate logistic regression analysis identified tumor histology, PD-ligand 1 (PD-L1) expression, tumor mutational burden, line, and regimen of ICI treatment as significant factors. Mutation subtypes of EGFR, KRAS, KEAP1, STK11, and disruptive TP53 mutations were associated with DCB. The decision tree (DT10) model, using the ten clinicopathological and genomic markers, showed superior performance in predicting DCB in the training set (area under the curve [AUC] = 0.82) and consistently outperformed other models in test sets. DT10-predicted-DCB patients manifested longer survival, an enriched inflamed tumor immune phenotype (67%), and higher peripheral TCR diversity, whereas the DT10-predicted-NDB (non-durable benefit) group showed an enriched desert immune phenotype (86%) and higher peripheral TCR clonality. CONCLUSIONS: The model effectively predicted DCB after front-/subsequent-line ICI treatment, with or without chemotherapy, for squamous and non-squamous lung cancer, offering clinicians valuable insights into efficacy prediction using cost-effective variables. FUNDING: This study was supported by the National Key R&D Program of China.

12.
Nat Commun ; 15(1): 4406, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782991

RESUMEN

The photoinduced non-thermalized hot electrons at an interface play a pivotal role in determining plasmonic driven chemical events. However, understanding non-thermalized electron dynamics, which precedes electron thermalization (~125 fs), remains a grand challenge. Herein, we simultaneously captured the dynamics of both molecules and non-thermalized electrons in the MXene/molecule complexes by femtosecond time-resolved spectroscopy. The real-time observation allows for distinguishing non-thermalized and thermalized electron responses. Differing from the thermalized electron/heat transfer, our results reveal two non-thermalized electron dynamical pathways: (i) the non-thermalized electrons directly transfer to attached molecules at an interface within 50 fs; (ii) the non-thermalized electrons scatter at the interface within 125 fs, inducing adsorbed molecules heating. These two distinctive pathways are dependent on the irradiating wavelength and the energy difference between MXene and adsorbed molecules. This research sheds light on the fundamental mechanism and opens opportunities in photocatalysis and interfacial heat transfer theory.

13.
Biosensors (Basel) ; 14(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785687

RESUMEN

The Wearable Robotic Limb (WRL) is a type of robotic arm worn on the human body, aiming to enhance the wearer's operational capabilities. However, proposing additional methods to control and perceive the WRL when human limbs are heavily occupied with primary tasks presents a challenge. Existing interactive methods, such as voice, gaze, and electromyography (EMG), have limitations in control precision and convenience. To address this, we have developed an interactive device that utilizes the mouth and tongue. This device is lightweight and compact, allowing wearers to achieve continuous motion and contact force control of the WRL. By using a tongue controller and mouth gas pressure sensor, wearers can control the WRL while also receiving sensitive contact feedback through changes in mouth pressure. To facilitate bidirectional interaction between the wearer and the WRL, we have devised an algorithm that divides WRL control into motion and force-position hybrid modes. In order to evaluate the performance of the device, we conducted an experiment with ten participants tasked with completing a pin-hole assembly task with the assistance of the WRL system. The results show that the device enables continuous control of the position and contact force of the WRL, with users perceiving feedback through mouth airflow resistance. However, the experiment also revealed some shortcomings of the device, including user fatigue and its impact on breathing. After experimental investigation, it was observed that fatigue levels can decrease with training. Experimental studies have revealed that fatigue levels can decrease with training. Furthermore, the limitations of the device have shown potential for improvement through structural enhancements. Overall, our mouth and tongue interactive device shows promising potential in controlling the WRL during tasks where human limbs are occupied.


Asunto(s)
Boca , Robótica , Lengua , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Adulto , Electromiografía
14.
Pharm Biol ; 62(1): 404-422, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739082

RESUMEN

CONTEXT: Traditional Chinese medicines (TCMs) have emerged as potential adjuvant therapies to treat non-small cell lung cancer. More direct comparative studies must be conducted among various oral TCMs. OBJECTIVE: This network meta-analysis evaluates the efficacy and safety of seven oral TCMs combined with chemotherapy in treating NSCLC. METHODS: The analysis included Zilongjin, Banmao, Hongdoushan, Huachansu, Kanglaite, Xihuang, and Pingxiao TCMs. Randomized-controlled trials (RCTs) were identified from the following databases: China National Infrastructure, Wanfang, PubMed, Embase, and the Cochrane Library up to April 2023. Two researchers independently extracted data. RESULTS: Sixty-eight RCTs (5,099 patients) were included. Compared to chemotherapy, Banmao capsules [odds ratio (OR) = 2.69, 95% confidence interval (CI) 1.96-3.69)] and Huachansu tablets [OR = 2.35, 95%CI (1.81, 3.05)] ranked in the top two in terms of increasing disease control rate. The two main TCMs to improve the objective response rate were Banmao capsules [OR = 3.49, 95%CI (2.17, 5.60)] and Zilongjin tablets [OR = 2.62, 95%CI (1.92, 3.57)]. Zilongjin tablets [OR = 3.47, 95%CI (2.14, 5.63)] and Huachansu tablets [OR = 3.30, 95%CI (1.65, 6.60)] were ranked as the top two in improving Karnofsky performance status. Hongdoushan capsules (SUCRA = 18.8%) and Banmao capsules (SUCRA = 19.8%) were the top two in reducing gastrointestinal toxicity. Zilongjin tablets (SUCRA = 18.9%) and Banmao capsules (SUCRA = 26.6%) were the top two to reduce liver and kidney toxicity. Hongdoushan capsules (SUCRA = 15.7%) and Huachansu tablets (SUCRA = 16.8%) ranked the top two in reducing thrombocytopenia. Banmao capsules (SUCRA = 14.3%) and Zilongjin tablets (SUCRA = 26.3%) were the top two decreasing leukopenia. CONCLUSIONS: Combining oral TCMs with platinum-based chemotherapy has shown superior efficacy compared to platinum-based chemotherapy alone in treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Medicina Tradicional China , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos , Administración Oral , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Resultado del Tratamiento
15.
Sci Total Environ ; 935: 173322, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777072

RESUMEN

The swift proliferation of forests converted into monoculture plantations has profound impacts on soil nutrients, microbial communities, and many ecological processes and functions. Nematodes are soil microfauna that play a pivotal role in biogeochemical cycling and in soil food web, whereas the response of soil nematode communities and energy flows to forest conversion remains unknown. Here, we assessed the community composition and the energy flows of the nematode food webs as a function of soil chemistry after conversion from natural forests (Forest) to four plantations (8-year-old): Amygdalus persica (Peach), Myrica rubra (Berry), Camellia oleifera (Oil), and Cunninghamia lanceolata (Fir). After forest conversion, soil organic carbon (SOC) and total nitrogen (TN) contents decreased by 65 % and 55 %, respectively. Forest conversion strongly reduced the abundance (particularly large-bodied omnivorous-predatory nematodes), diversity, maturity, and stability of the soil nematode community. The shifts in composition and structure of nematode communities after forest conversion are reflected in changes in the abundance of predominant genera and trophic taxa, especially bacterivorous, fungivorous, and omnivorous-predatory nematodes. Acrobeloides notably increased, whereas Plectus, Prismatolaimus, Tylencholaimus, and Tripyla decreased. Accordingly, the abundances of r-strategy nematodes (cp value = 1-2) increased, but that of the K-strategists (cp value = 3-5) declined. Additionally, the energy flow across the soil nematode food web was reduced by 36 % and flow uniformity declined by 24 % after forest conversion. These changes in nematode diversity and abundance were triggered by diminishing soil C and N contents, thereby affecting the energy flows via the nematode food webs. Thus, forest conversion affects soil biotas and multi-functions from the perspective of nematode food web structure and energy flows, and underlines the interconnections between ecosystem and energy dynamics across multi-trophic levels, which is crucial for sustainable forest management.

16.
J Mol Med (Berl) ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739269

RESUMEN

Immune checkpoint inhibitors (ICIs) have achieved impressive success in lung adenocarcinoma (LUAD). However, the response to ICIs varies among patients, and predictive biomarkers are urgently needed. PCDH11X is frequently mutated in LUAD, while its role in ICI treatment is unclear. In this study, we curated genomic and clinical data of 151 LUAD patients receiving ICIs from three independent cohorts. Relations between PCDH11X and treatment outcomes of ICIs were examined. A melanoma cohort collected from five published studies, a pan-cancer cohort, and non-ICI-treated TCGA-LUAD cohort were also examined to investigate whether PCDH11X mutation is a specific predictive biomarker for LUAD ICI treatment. Among the three ICI-treated LUAD cohorts, PCDH11X mutation (PCDH11X-MUT) was associated with better clinical response compared to wild-type PCDH11X (PCDH11X-WT). While in ICI-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and the non-ICI-treated TCGA-LUAD cohort, no significant differences in overall survival (OS) were observed between the PCDH11X-MUT and PCDH11X-WT groups. PCDH11X mutation was associated with increased PD-L1 expression, tumor mutation burden (TMB), neoantigen load, DNA damage repair (DDR) mutations, and hot tumor microenvironment in TCGA-LUAD cohort. Our findings suggested that the PCDH11X mutation might serve as a specific biomarker to predict the efficacy of ICIs for LUAD patients. Considering the relatively small sample size of ICI-treated cohorts, future research with larger cohorts and prospective clinical trials will be essential for validating and further exploring the role of PCDH11X mutation in the context of immunotherapy outcomes in LUAD. KEY MESSAGES: PCDH11X mutation is associated with better clinical response compared to wild type PCDH11X in three ICIs-treated LUAD cohorts. In ICIs-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and non-ICIs-treated TCGA-LUAD cohorts PCDH11X mutation is not associated with better clinical response, suggesting PCDH11X mutation might be a specific biomarker to predict the efficacy of ICIs treatment for LUAD patients. PCDH11X mutation is associated with increased PD-L1 expression, tumor mutation burden, and neoantigen load in TCGA-LUAD cohort. PCDH11X mutation is associated with hot tumor microenvironment in TCGA-LUAD cohort.

17.
BMC Genomics ; 25(1): 462, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735952

RESUMEN

BACKGROUND: Detecting epistatic interactions (EIs) involves the exploration of associations among single nucleotide polymorphisms (SNPs) and complex diseases, which is an important task in genome-wide association studies. The EI detection problem is dependent on epistasis models and corresponding optimization methods. Although various models and methods have been proposed to detect EIs, identifying EIs efficiently and accurately is still a challenge. RESULTS: Here, we propose a linear mixed statistical epistasis model (LMSE) and a spherical evolution approach with a feedback mechanism (named SEEI). The LMSE model expands the existing single epistasis models such as LR-Score, K2-Score, Mutual information, and Gini index. The SEEI includes an adaptive spherical search strategy and population updating strategy, which ensures that the algorithm is not easily trapped in local optima. We analyzed the performances of 8 random disease models, 12 disease models with marginal effects, 30 disease models without marginal effects, and 10 high-order disease models. The 60 simulated disease models and a real breast cancer dataset were used to evaluate eight algorithms (SEEI, EACO, EpiACO, FDHEIW, MP-HS-DHSI, NHSA-DHSC, SNPHarvester, CSE). Three evaluation criteria (pow1, pow2, pow3), a T-test, and a Friedman test were used to compare the performances of these algorithms. The results show that the SEEI algorithm (order 1, averages ranks = 13.125) outperformed the other algorithms in detecting EIs. CONCLUSIONS: Here, we propose an LMSE model and an evolutionary computing method (SEEI) to solve the optimization problem of the LMSE model. The proposed method performed better than the other seven algorithms tested in its ability to identify EIs in genome-wide association datasets. We identified new SNP-SNP combinations in the real breast cancer dataset and verified the results. Our findings provide new insights for the diagnosis and treatment of breast cancer. AVAILABILITY AND IMPLEMENTATION: https://github.com/scutdy/SSO/blob/master/SEEI.zip .


Asunto(s)
Algoritmos , Neoplasias de la Mama , Epistasis Genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias de la Mama/genética , Estudio de Asociación del Genoma Completo
18.
Exp Cell Res ; 439(1): 114076, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719174

RESUMEN

Glioblastoma (GBM) is a common primary central nervous system tumor. The molecular mechanisms of glioma are unknown, and the prognosis is poor. Therefore, exploring the underlying mechanisms and screening for new prognostic markers and therapeutic targets is crucial. We utilized the weighted gene co-expression network analysis (WGCNA), Differentially Expressed Genes (DEGs), and LASSO-COX analysis to identify three target genes. Next, we constructed and evaluated a prognostic model, screening out COL8A1 as a risk gene. Through a sequence of cellular functional experiments, in vivo studies, and RNA sequencing, we delved into exploring the functional effects and molecular mechanisms of COL8A1 on GBM cells. Finally, the correlation between COL8A1 and tumor immune cells and different inflammatory responses was analyzed. Immunohistochemistry experiments revealed the influence of COL8A1 on macrophage polarization. The COL8A1 expression level was associated with the grade, prognosis, and tumor microenvironment (TME) of glioma. Functional experiments showed that COL8A1 inhibited GBM cell apoptosis and promoted migration, invasion, and proliferation in vitro and in vivo. We also found that COL8A1 promotes the epithelial-mesenchymal transition process and may mediate the activation of the ERK pathway through SHC1. In addition, immune infiltration analysis showed that COL8A1 was closely associated with macrophages in glioma tissues, significantly suppressing the signaling of M1-like -type macrophages and enhancing the signaling of M2-like -type macrophages. COL8A1 was first found to be associated with prognosis, progression, and immune microenvironment of glioma and may serve as a new marker of prognosis and a therapeutic target.

19.
Eur Radiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780767

RESUMEN

OBJECTIVE: To investigate the association of coronary plaque burden variables derived from coronary computed tomography angiography (CCTA) before patients underwent their first percutaneous coronary intervention (PCI) procedure and major adverse cardiovascular events (MACEs) after PCI. METHODS: Patients who underwent CCTA before their first PCI were included retrospectively. A radiologist and a cardiologist analyzed CCTA images on a dedicated workstation. The coronary plaque burden variables included total plaque volume, total percent atheroma volume, volumes and fractions of total low-attenuation plaque, total fibrous plaque, and total calcified plaque. The primary outcomes were MACEs, a composite of all-cause death, nonfatal myocardial infarction, nonfatal stroke, and unscheduled coronary revascularization. RESULTS: A total of 230 patients were included in the final analysis. During a median follow-up of 4.8 years, 67 MACEs occurred. Total plaque volume, total percent atheroma volume, volumes of total low-attenuation plaque and total fibrous plaque but not their fractions were independent predictors for MACEs. Compared with the first tertiles, the hazard ratio of the third tertile of total plaque volume, total percent atheroma volume, total low-attenuation plaque volume, and total fibrous plaque volume were 2.06 (95% CI: 1.03-4.15), 2.15 (95% CI: 1.02-4.51), 3.04 (95% CI: 1.45-6.36), and 2.23 (95% CI: 1.11-4.46), respectively. Neither total calcified plaque volume nor fraction was associated with MACEs independently. CONCLUSION: Selected pre-PCI CCTA-derived variables, including total percent atheroma volume, volumes of total plaque, total low-attenuation plaque and total fibrous plaque, were significantly associated with MACEs after PCI, suggesting that CCTA before PCI reveals the residual risk after revascularization. CLINICAL RELEVANCE STATEMENT: The coronary plaque burden variables derived from coronary computed tomography angiography before percutaneous coronary intervention are independently associated with major adverse cardiovascular events, which could be instrumental in optimizing patient management. KEY POINTS: Coronary plaque burden is associated with cardiovascular events in patients with coronary artery disease. Selected total plaque burden variables derived from coronary computed tomography angiography before percutaneous coronary intervention were associated with poor prognosis. Routine coronary computed tomography angiography before percutaneous coronary intervention might be helpful in reducing future risks.

20.
J Food Sci ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700357

RESUMEN

The abilities of Chinese quince free proanthocyanidins (FP) and bound proanthocyanidins (BP) at different levels (0.1%, 0.15%, and 0.3%) to mitigate heterocyclic aromatic amine (HAA) formation in fried chicken patties were investigated for the first time and compared with vitamin C (Vc). FP and BP reduced HAAs in a dose-dependent manner. Significantly, high concentrations of FP (0.3%) resulted in a reduction of PhIP, harman, and norharman levels by 59.84%, 22.91%, and 38.21%, respectively, in chicken patties. The addition of proanthocyanidins significantly (p < 0.05) reduced the weight loss of fried chicken patties. Furthermore, a positive correlation was observed among pH, weight loss, and total HAA formation in all three groups (FP, BP, and Vc). Multivariate analysis showed that FP had a more pronounced effect than BP from the perspective of enhancing the quality of fried chicken patties and reducing the formation of HAAs. These results indicate that proanthocyanidins, both BP and FP, but especially FP, from Chinese quince can inhibit the formation of carcinogenic HAAs when added to protein-rich foods that are subsequently fried.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA