Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
Small ; : e2403566, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949415

RESUMEN

Amidino-based additives show great potential in high-performance perovskite solar cells (PSCs). However, the role of different functional groups in amidino-based additives have not been well elucidated. Herein, two multifunctional amidino additives 4-amidinobenzoic acid hydrochloride (ABAc) and 4-amidinobenzamide hydrochloride (ABAm) are employed to improve the film quality of formamidinium lead iodide (FAPbI3) perovskites. Compared with ABAc, the amide group imparts ABAm with larger dipole moment and thus stronger interactions with the perovskite components, i.e., the hydrogen bonds between N…H and I- anion and coordination bonds between C = O and Pb2+ cation. It strengthens the passivation effect of iodine vacancy defect and slows down the crystallization process of α-FAPbI3, resulting in the significantly reduced non-radiative recombination, long carrier lifetime of 1.7 µs, uniformly large crystalline grains, and enhances hydrophobicity. Profiting from the improved film quality, the ABAm-treated PSC achieves a high efficiency of 24.60%, and maintains 93% of the initial efficiency after storage in ambient environment for 1200 hours. This work provides new insights for rational design of multifunctional additives regarding of defect passivation and crystallization control toward highly efficient and stable PSCs.

2.
Front Pharmacol ; 15: 1416992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994197

RESUMEN

Vascular smooth muscle cells (VSMCs) are integral to the pathophysiology of cardiovascular diseases (CVDs). Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in epigenetic regulation of VSMCs gene expression. Emerging researches suggest that EZH2 has a dual role in VSMCs, contingent on the pathological context of specific CVDs. This mini-review synthesizes the current knowledge on the mechanisms by which EZH2 regulates VSMC proliferation, migration and survival in the context of CVDs. The goal is to underscore the potential of EZH2 as a therapeutic target for CVDs treatment. Modulating EZH2 and its associated epigenetic pathways in VSMCs could potentially ameliorate vascular remodeling, a key factor in the progression of many CVDs. Despite the promising outlook, further investigation is warranted to elucidate the epigenetic mechanisms mediated by EZH2 in VSMCs, which may pave the way for novel epigenetic therapies for conditions such as atherosclerosis and hypertension.

3.
Sci Rep ; 14(1): 16625, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025940

RESUMEN

In order to evaluate the beneficiation plant environment in a more scientific and reasonable way, this paper took the workshop environment of the beneficiation plant as the research object. This paper divided the beneficiation plant into 7 evaluation units according to its functions. The evaluation indices are dust, noise, light environment, microclimate, benzene, toluene and xylene. This paper combines the G1 method and the entropy weight method to evaluate the weight of each evaluation index, the element extension model of the concentrator working environment is established by the element analysis method, and the matter element analysis method is used to establish an evaluation index system of a beneficiation plant in East China. The results show that the evaluation level of the breaking workshop and the auxiliary facilities are unqualified, the auxiliary facility is qualified, the culling workshop, culled yard and accessory building are medium, the screening workshop and grinding workshop are good.

4.
Angew Chem Int Ed Engl ; : e202406140, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981859

RESUMEN

Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6% (@ 490 nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.

5.
Clin Case Rep ; 12(7): e9028, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911919

RESUMEN

Key Clinical Message: In addition to post-transplant lymphoproliferative disorders, it is necessary to be alert to the drug-resistant bacteria or fungal infection, especially Talaromyces marneffei, in kidney transplant patients who have failed antibiotic treatment and whose PET-CT indicates high metabolic mass in the transplanted kidney with a large number of other organs and lymph nodes. Abstract: Talaromyces marneffei (TM) is a rare pathogenic fungus that primarily affects individuals with compromised immune systems. Post-transplant lymphoproliferative disorders (PTLD) are serious complications that can occur after solid organ and cell transplantation. Both TM infection and PTLD can invade the monocyte-macrophage system and often manifest as extranodal masses. This case report describes a kidney transplant patient who presented with symptoms of frequent, urgent, and painful urination over 6 months. Pulmonary CT scans revealed multiple nodules, and PET-CT demonstrated enlarged lymph nodes in the lungs and the transplanted kidney. The clinical manifestations closely mimicked those of PTLD. The confirmation of TM was achieved through pathogen metagenomic next-generation sequencing and renal biopsy. Unfortunately, despite receiving treatment with antifungal agents, anti-infective therapy, the patient's condition did not respond favorably, ultimately resulting in their unfortunate demise due to COVID-19.

7.
Int J Biol Macromol ; 273(Pt 1): 133060, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871107

RESUMEN

Plant-derived polysaccharides are important components for biological functions. The objective of this study is to study the mechanisms by which polysaccharides from three Huanglian (Rhizome Coptidis, HL) of Coptis chinensis, C. deltoidea, and Coptis teeta affect type 2 diabetes mellitus (T2DM) by analyzing the gut microbiome and their metabolites. A long-term high-fat diet (HFD) combined with streptozocin (STZ) induction was used to construct the T2DM mice model. The histopathology of liver, pancreas, and colon, biochemical indexes related to mice were determined to assess the ameliorative effects of these three HL polysaccharides (HLPs) on T2DM. The results indicated that oral HLPs improved hyperglycemia, insulin resistance, blood lipid levels, and ß-cell function. Further, HLPs elevated the growth of advantageous beneficial bacteria within the gut microbiota and raised the concentrations of short-chain fatty acids (SCFAs), particularly butyric acid. Metabolic analyses showed that HLPs ameliorated the effects of T2DM on microbial-derived metabolites and related metabolic pathways, especially the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan. In the combined analysis, many associations of T2DM-related biochemical indicators with gut microbes and their metabolites were extracted, which suggested the important role of gut microbiome and fecal metabolome in the amelioration of type 2 diabetes mellitus by HLPs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Heces , Microbioma Gastrointestinal , Metaboloma , Polisacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Heces/microbiología , Metaboloma/efectos de los fármacos , Masculino , Estreptozocina , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Coptis/química , Resistencia a la Insulina
8.
Front Neurol ; 15: 1418714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915801

RESUMEN

Purpose: The objective of this study was to investigate alterations in functional connectivity density (FCD) mapping and their impact on functional connectivity (FC) among individuals diagnosed with Type 2 diabetes mellitus (T2DM) across different cognitive states. Moreover, the study sought to explore the potential association between aberrant FCD/FC patterns and clinical or cognitive variables. Methods: A total of 211 participants were recruited for this study, consisting of 75 healthy controls (HCs), 89 T2DM patients with normal cognitive function (DMCN), and 47 T2DM patients with mild cognitive impairment (DMCI). The study employed FCD analysis to pinpoint brain regions exhibiting significant FCD alterations. Subsequently, these regions showing abnormal FCD served as seeds for FC analysis. Exploratory partial correlations were conducted to explore the relationship between clinical biochemical indicators, neuropsychological test scores, and altered FCD or FC. Results: The FCD analysis revealed an increased trend in global FCD (gFCD), local FCD (lFCD), and long-range FCD (lrFCD) within the bilateral supramarginal gyrus (SMG) among individuals with DMCN. Additionally, significant lFCD alterations were observed in the right inferior frontal gyrus and left precuneus when comparing DMCN to HCs and DMCI. Conclusion: When comparing individuals with T2DM and healthy controls (HCs), it was revealed that DMCN exhibited significant improvements in FCD. This suggests that the brain may employ specific compensatory mechanisms to maintain normal cognitive function at this stage. Our findings provide a novel perspective on the neural mechanisms involved in cognitive decline associated with T2DM.

9.
EFORT Open Rev ; 9(6): 556-566, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828976

RESUMEN

Objective: Through meta-analysis, this study aims to comprehensively evaluate the efficacy of single-plating and double-plating in the treatment of comminuted fractures of the distal femur. Methods: Computer searches of PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), VIP, and Wanfang digital journals were performed, and the timeframe for the searches was from the establishment of each database to July 2023 for each of the databases. Meta-analysis was performed using RevMan 5.4 software provided by the Cochrane Library, and the review process was registered in the PROSPERO database. Results: A total of ten studies were included for statistical analysis. One randomised controlled study and nine retrospective cohort studies with a total of 563 patients were included. The double-plate group was superior to the single-plate group in terms of knee mobility at 6 months postoperatively, overall postoperative complications, and the rate of healing of knee deformity. However, it increased the operation time and intraoperative bleeding, and the difference between the two groups was statistically significant (P < 0.05). There was no significant difference between the two groups in terms of excellent knee function rate, fracture healing time, plate fracture, postoperative infection, delayed fracture healing, and non-union (P ≥ 0.05). Conclusion: Double plate fixation for comminuted fractures of the distal femur can improve knee mobility at 6 months postoperatively, reduce overall postoperative complications, and decrease the incidence of malunion healing. However, it increases operative time and bleeding. Randomised studies are needed to provide strong evidence in the future.

10.
J Virol ; : e0075324, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829136

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus, is prevalent in natural reservoir pigs and infects mice. This raises concerns about host jumping or spillover, but little is known about the cause of occurrence. Here, we revealed that dipeptidyl peptidase 4 (DPP4) is a candidate binding target of PHEV spikes and works as a broad barrier to overcome. Investigations of the host breadth of PHEV confirmed that cells derived from pigs and mice are permissive to virus propagation. Both porcine DPP4 and murine DPP4 have high affinity for the viral spike receptor-binding domain (RBD), independent of their catalytic activity. Loss of DPP4 expression results in limited PHEV infection. Structurally, PHEV spike protein binds to the outer surface of blades IV and V of the DPP4 ß-propeller domain, and the DPP4 residues N229 and N321 (relative to human DPP4 numbering) participate in RBD binding via its linked carbohydrate entities. Removal of these N-glycosylations profoundly enhanced the RBD-DPP4 interaction and viral invasion, suggesting they act as shielding in PHEV infection. Furthermore, we found that glycosylation, rather than structural differences or surface charges, is more responsible for DPP4 recognition and species barrier formation. Overall, our findings shed light on virus-receptor interactions and highlight that PHEV tolerance to DPP4 orthologs is a putative determinant of its cross-species transmission or host range expansion.IMPORTANCEPHEV is a neurotropic betacoronavirus that is circulating worldwide and has raised veterinary and economic concerns. In addition to being a reservoir species of pigs, PHEV can also infect wild-type mice, suggesting a "host jump" event. Understanding cross-species transmission is crucial for disease prevention and control but remains to be addressed. Herein, we show that the multifunctional receptor DPP4 plays a pivotal role in the host tropism of PHEV and identifies the conserved glycosylation sites in DPP4 responsible for this restriction. These findings highlight that the ability of PHEV to utilize DPP4 orthologs potentially affects its natural host expansion.

11.
Eur J Nucl Med Mol Imaging ; 51(9): 2806-2818, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691111

RESUMEN

PURPOSE: Biochemical recurrence (BCR) following radical prostatectomy (RP) is a significant concern for patients with prostate cancer. Reliable prediction models are needed to identify patients at risk for BCR and facilitate appropriate management. This study aimed to develop and validate a clinical-radiomics model based on preoperative [18 F]PSMA-1007 PET for predicting BCR-free survival (BRFS) in patients who underwent RP for prostate cancer. MATERIALS AND METHODS: A total of 236 patients with histologically confirmed prostate cancer who underwent RP were retrospectively analyzed. All patients had a preoperative [18 F]PSMA-1007 PET/CT scan. Radiomics features were extracted from the primary tumor region on PET images. A radiomics signature was developed using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The performance of the radiomics signature in predicting BRFS was assessed using Harrell's concordance index (C-index). The clinical-radiomics nomogram was constructed using the radiomics signature and clinical features. The model was externally validated in an independent cohort of 98 patients. RESULTS: The radiomics signature comprised three features and demonstrated a C-index of 0.76 (95% CI: 0.60-0.91) in the training cohort and 0.71 (95% CI: 0.63-0.79) in the validation cohort. The radiomics signature remained an independent predictor of BRFS in multivariable analysis (HR: 2.48, 95% CI: 1.47-4.17, p < 0.001). The clinical-radiomics nomogram significantly improved the prediction performance (C-index: 0.81, 95% CI: 0.66-0.95, p = 0.007) in the training cohort and (C-index: 0.78 95% CI: 0.63-0.89, p < 0.001) in the validation cohort. CONCLUSION: We developed and validated a novel [18 F]PSMA-1007 PET-based clinical-radiomics model that can predict BRFS following RP in prostate cancer patients. This model may be useful in identifying patients with a higher risk of BCR, thus enabling personalized risk stratification and tailored management strategies.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Oligopéptidos/química , Supervivencia sin Enfermedad , Procesamiento de Imagen Asistido por Computador , Radiómica , Niacinamida/análogos & derivados
13.
Angew Chem Int Ed Engl ; 63(30): e202404401, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38729917

RESUMEN

It is a crucial role for enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) to prepare high-quality perovskite films, which can be achieved by delaying the crystallization of perovskite film. Hence, we designed difluoroacetic anhydride (DFA) as an additive to regulating crystallization process thus reducing defect formation during perovskite film formation. It was found DFA reacts with DMSO by forming two molecules, difluoroacetate thioether ester (DTE) and difluoroacetic acid (DA). The strong bonding DTE⋅PbI2 and DA⋅PbI2 retard perovskite crystallization process for high-quality film formation, which was monitored through in situ UV/Vis and PL tests. By using DFA additives, we prepared perovskite films with high-quality and low defects. Finally, a champion PCE of 25.28 % was achieved with excellent environmental stability, which retained 95.75 % of the initial PCE after 1152 h at 25 °C under 25 % RH.

14.
Small ; : e2401701, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705844

RESUMEN

Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.

15.
Trauma Case Rep ; 52: 101040, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38784218

RESUMEN

A 28-year-old man involved in a serious motorcycle accident was admitted to our hospital with comminuted fractures of the ipsilateral femoral shaft and tibial shaft, as well as multiple fractures of the right lower limb, including the proximal fibula, medial malleolus, and the third and fourth distal metatarsals. In addition, the patient suffered a skin contusion and laceration of the right foot. On the first day of admission, this patient suddenly developed tachycardia, pyrexia, and tachypnoea, and was immediately transferred to the ICU for further treatment due to a CT-diagnosed pulmonary fat embolism (FE). As a symptomatic treatment, he received a prophylactic dose of low-molecular-weight heparin for 10 days, after which his condition improved. A Doppler ultrasound of the lower leg and a follow-up chest CT angiography were performed, which excluded any remaining thrombus and verified that the pulmonary FE had improved without deterioration. Closed-reduction and retrograde intramedullary nailing were performed for the femoral shaft fractures, while antegrade intramedullary nailing was performed for the tibial shaft fractures under general anaesthesia. In the three-year follow-up, the patient had recovered with good function of the right limb, without any respiratory discomfort. Both the femoral and tibial shaft fractures finally resolved without any further treatment. Ipsilateral femoral and tibial shaft fractures should undergo surgical stabilisation as early as possible to avoid pulmonary FEs. It is still controversial whether intramedullary nailing is suitable for floating knee injuries complicated by pulmonary FEs. However, if patients with pulmonary FEs require intramedullary nailing, we suggest that surgery should be performed after at least one week of anticoagulant use, when patient vital signs are stable and there is no sign of dyspnoea. In addition, patients should try to avoid reaming during the operation to prevent and decrease "second hit" for the lung.

16.
Adv Mater ; : e2403038, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724029

RESUMEN

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

17.
J Vet Med Sci ; 86(6): 684-688, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38644184

RESUMEN

We describe here a case of canine mammary benign mixed tumor with sebaceous metaplasia in the right fifth mammary gland of an eight-year-old, intact female Poodle dog. Grossly, the mass was firm with off-white, poorly lobulated cut surfaces. Histologically, the luminal epithelial cells and myoepithelial cells proliferated with cartilage formation and focal squamous metaplasia. Moreover, a large number of nests of various sizes, which were filled with foamy cells in the center and associated with basaloid reserve-like cells in the periphery, showed sebaceous gland-like structures. Immunohistochemically, myoepithelial cells and reserve-like cells in the metaplastic sebaceous gland-like structures were CK14, α-smooth muscle actin (α-SMA) and p63 positive, suggesting a possibility that these two components may have a common cell of origin.


Asunto(s)
Enfermedades de los Perros , Neoplasias Mamarias Animales , Animales , Perros , Femenino , Enfermedades de los Perros/patología , Neoplasias Mamarias Animales/patología , Glándulas Sebáceas/patología , Metaplasia/veterinaria , Metaplasia/patología
18.
Adv Mater ; 36(26): e2400783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38607655

RESUMEN

Halide perovskites have shown great potential in X-ray detection due to outstanding optoelectronic properties. However, finding a cost-effective and environmentally sustainable method for handling end-of-life devices has remained challenging. Here, a "One-Click Restart" eco-friendly recycling strategy is introduced for end-of-life perovskite X-ray detectors. This method, utilizing water, allows for the recapture and reuse of both perovskite and conductor materials. The process is straightforward and environmentally friendly, eliminating the need for further chemical treatment, purification, additional additives or catalysts, and complex equipment. A sustainable device cycle is developed by reconstructing flexible perovskite membranes for wearable electronics from recycled materials. Large-scale, flexible membranes made from metal-free perovskite DABCO-N2H5-I3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) achieve remarkably impressive average sensitivity of 6204 ± 268 µC Gyair -1 cm-2 and a low detection limit of 102.3 nGyair s-1, which makes highly effective for X-ray imaging. The sensitivity of recycled flexible devices not only matches that of single-crystal devices made with fresh materials but also ranks as the highest among all metal-free perovskite X-ray detectors. "One-Click Restart" applies to scalable flexible devices derived from aged single-crystal counterparts, offering significant cost, time, and energy savings compared to their single-crystal equivalents. Such advantages significantly boost future market competitiveness.

19.
Stem Cell Res ; 77: 103420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643711

RESUMEN

PPM1A is a member of the serine/threonine protein phosphatase family. It can bind to a variety of proteins to dephosphorylate them, and extensively regulates many life activities such as cell growth, cell stress, immune response, and tumor formation. Here we constructed a human induced pluripotent stem cell (hiPSC) line with knockout of PPM1A using CRISPR/Cas9-mediated gene targeting. This cell line exhibits normal karyotype, pluripotency, and trilineage differentiation potential, which could provide a useful cellular resource for exploring the mechanism of PPM1A in regulating downstream signaling pathways and explore the application of PPM1A in anti-tumor and anti-infection.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes Inducidas , Proteína Fosfatasa 2C , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Diferenciación Celular , Línea Celular
20.
Angew Chem Int Ed Engl ; 63(22): e202403739, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38565430

RESUMEN

Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458 nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA