Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0297677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635561

RESUMEN

A nitrogen-phosphorus dual-doped porous spore carbon (NP-PSC) positive electrode matrix was prepared using native auricularia auricula as solid medium based on the principle of biomass rot. Yeast was introduce and cultured by the auricularia auricula solid medium. The freeze-drying and carbonization activation processes made the materials present a three-dimensional porous spore carbon aerogel properties. Yeast fermentation transformed auricularia auricula from blocky structure to porous structure and introduced nitrogen-phosphorus dual-doping. The physical and chemical properties of the prepared materials were characterized in detail. Electrochemical performance of NP-PSC in Li-S batteries was systematically investigated. Porous structure and heteroatom-doping improved the electrochemical performance, which is much superior to conventional activated carbon materials.


Asunto(s)
Auricularia , Litio , Saccharomyces cerevisiae , Porosidad , Iones , Nitrógeno , Fósforo
2.
Front Chem ; 11: 1288013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179239

RESUMEN

A nitrogen-sulfur dual-doped black fungus porous carbon (NS-FPC) matrix was prepared with natural black fungus as the carbon source and cysteine as the nitrogen-sulfur source. A black fungus-based solution was obtained by hydrothermal treatment. After further carbonization activation and combination with sulfur processing, the NS-FPC/S positive electrode materials were prepared. The uniform recombination of biomass carbon provides an efficient conductive framework for sulfur. The porous structure is conducive to the transport of electrolytes. Heteroatom doping can provide a more active site. The structure and composition analyses of the materials were carried out using X-ray diffraction (XRD). The electronic binding energy and bonding state were analyzed by X-ray photoelectron spectroscopy (XPS). The morphology was observed by scanning electron microscopy and transmission electron microscopy. The specific surface area and pore size distribution were analyzed using an N2 adsorption-desorption experiment. Sulfur loading was determined through thermogravimetric analysis. The electrochemical performance of NS-FPC/S in Li-S batteries was systematically investigated. The result shows that the NS-FPC/S electrode maintains more than 1,000 mAh g-1 reversible capacity after 100 cycles at 0.2 C current density, with a capacity retention of 85%. The cycle and rate performance are both considerably superior to those of traditional activated carbon materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA