Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Talanta ; 282: 126989, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39383725

RESUMEN

Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.

2.
Rev Cardiovasc Med ; 25(9): 327, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39355590

RESUMEN

Background: Premature ventricular complex (PVC) induced cardiomyopathy (PVC-CMP) and exacerbated left ventricular systolic dysfunction (LVSD) are common in clinical scenarios. However, their precise risk factors are currently unclear. Methods: We performed a systematic review of PubMed, EMBASE, Web of Science, and Chinese-based literature database (CBM) to identify observational studies describing the factors associated with PVC-CMP and post-ablation LVSD reversibility. A total of 25 and 12 studies, involving 4863 and 884 subjects, respectively, were eligible. We calculated pooled multifactorial odds ratios (OR) and 95% confidence intervals (CI) for each parameter using random-effects and fixed-effects models. Results: The results showed that 3 independent risk factors were associated with PVC-CMP: being asymptomatic (OR and 95% CI: 3.04 [2.13, 4.34]), interpolation (OR and 95% CI: 2.47 [1.25, 4.92]), and epicardial origin (epi-origin) (OR and 95% CI: 3.04 [2.13, 4.34]). Additionally, 2 factors were significantly correlated with post-ablation LVSD reversibility: sinus QRS wave duration (QRSd) (OR and 95% CI: 0.95 [0.93, 0.97]) and PVC burden (OR and 95% CI: 1.09 [0.97, 1.23]). Conclusions: the relatively consistent independent risk factors for PVC-CMP and post-ablation LVSD reversibility are asymptomatic status, interpolation, epicardial origin, PVC burden, and sinus QRS duration, respectively.

3.
Adv Sci (Weinh) ; : e2402345, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308160

RESUMEN

Breast reconstruction is essential for improving the appearance of patients after cancer surgery. Traditional breast prostheses are not appropriate for those undergoing partial resections and cannot detect and treat locoregional recurrence. Personalized shape prostheses that can smartly sense tumor relapse and deliver therapeutics are needed. A 3D-printed prosthesis that contains a therapeutic hydrogel is developed. The hydrogel, which is fabricated by crosslinking the polyvinyl alcohol with N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-tetramethylpropane-1,3-diaminium, is responsive to reactive oxygen species (ROS) in the tumor microenvironment. Specifically, RSL3, a ferroptosis inducer that is loaded in hydrogels, can trigger tumor ferroptosis. Intriguingly, RSL3 encapsulated in the ROS-responsive hydrogel exerts antitumor effects by increasing the numbers of tumor-infiltrated CD4+ T cells, CD8+ T cells, and M1 macrophages while reducing the number of M2 macrophages. Therefore, this new prosthesis not only allows personalized shape reconstruction, but also detects and inhibits tumor recurrence. This combination of aesthetic appearance and therapeutic function can be very beneficial for breast cancer patients undergoing surgery.

4.
Sci Rep ; 14(1): 21760, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294345

RESUMEN

Transformer-based methods effectively capture global dependencies in images, demonstrating outstanding performance in multiple visual tasks. However, existing Transformers cannot effectively denoise large noisy images captured under low-light conditions owing to (1) the global self-attention mechanism causing high computational complexity in the spatial dimension owing to a quadratic increase in computation with the number of tokens; (2) the channel-wise self-attention computation unable to optimise the spatial correlations in images. We propose a local-global interaction Transformer (LGIT) that employs an adaptive strategy to select relevant patches for global interaction, achieving low computational complexity in global self-attention computation. A top-N patch cross-attention model (TPCA) is designed based on superpixel segmentation guidance. TPCA selects top-N patches most similar to the target image patch and applies cross attention to aggregate information from them into the target patch, effectively enhancing the utilisation of the image's nonlocal self-similarity. A mixed-scale dual-gated feedforward network (MDGFF) is introduced for the effective extraction of multiscale local correlations. TPCA and MDGFF were combined to construct a hierarchical encoder-decoder network, LGIT, to compute self-attention within and across patches at different scales. Extensive experiments using real-world image-denoising datasets demonstrated that LGIT outperformed state-of-the-art (SOTA) convolutional neural network (CNN) and Transformer-based methods in qualitative and quantitative results.

5.
J Hazard Mater ; 480: 135786, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278031

RESUMEN

Glyphosate (Gly), as a widely used broad-spectrum herbicide, may lead to soil and water pollution due to its persistence in the environment. Herein, the co-reduction method was employed to anchor bimetallic PdCu onto the Ni and nitrogen-doped 3D Flower-like Carbon Materials (Ni@NC), creating a composite material (PdCu/Ni@NC) with high specific surface area and good catalytic performance. This composite was used to modify screen-printed electrodes (SPE) to develop a portable and efficient Gly detection platform. In the presence of Cl⁻, the copper active sites convert to CuCl, achieving signal amplification. Upon the addition of Gly, a competitive reaction between Cu and Gly converts CuCl into a Cu-Gly complex, resulting in a sharp decrease in the electrochemical signal. This signal drop is used to detect Gly. The bimetallic PdCu nanoparticles (NPs) endowed the sensing platform with better stability and electrochemical performance due to their synergistic effect, and their stability was simply verified by Density functional theory (DFT). The sensor demonstrates a linear detection range spanning from 1 × 10⁻¹ ³ to 1 × 10⁻5 M, with a limit of detection (LOD) of 3.72 × 10⁻¹ 4 M. The sensor demonstrated a recovery rate of 95.9 % to 104.5 % in actual samples such as water and soil, indicating its potential for practical application.

6.
Small ; : e2400987, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295489

RESUMEN

2D Fe-chalcogenides emerge with rich structures, magnetisms, and superconductivities, which spark the growing research interests in the torturous transition mechanism and tunable properties for their potential applications in nanoelectronics. Uniaxial strain can produce a lattice distortion to study symmetry breaking induced exotic properties in 2D magnets. Herein, the anomalous Raman spectrum of 2D tetragonal (t-) and hexagonal (h-) FeTe is systematically investigated via uniaxial strain engineering strategy. It is found that both t- and h-FeTe keep the structural stability under different uniaxial tensile or compressive strain up to ± 0.4%. Intriguingly, the lattice vibrations along both in-plane and out-of-plane directions exceptionally harden (softened) under tensile (compressive) strain, distinguished from the behaviors of many conventional 2D systems. Further, the difference in thickness-dependent strain effect can be well explained by their structural discrepancy between two polymorphs of FeTe. These results can supply a unique platform to explore the vibrational properties of many novel 2D materials.

7.
Sci Total Environ ; 951: 175459, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173759

RESUMEN

Lithium-ion batteries (LIBs) are widely used in various aspects of human life and production due to their safety, convenience, and low cost, especially in the field of electric vehicles (EVs). Currently, the number of LIBs worldwide is growing exponentially, which also leads to an increase in discarded LIBs. Spent lithium-ion batteries (S-LIBs) contain valuable metals and environmentally hazardous chemicals, necessitating proper resource recovery and harmless treatment of these S-LIBs. Therefore, research on S-LIBs recycling is beneficial for sustainable EVs development. This paper aims to critically review the research progress in the field of S-LIBs recycling, focusing on the recycling technology of cathode materials. First, the article introduces the composition, classification, and working principle of LIB. It then discusses the evaluation and monitoring of batteries that can no longer be used, so that they can be repurposed or dismantled for disposal. Subsequently, introduces that batteries that can no longer be used should undergo evaluation and monitoring for repurposing or dismantling. Emphasize the treatment of cathode materials, including two traditional recycling methods hydrometallurgy and pyrometallurgy as well as five new direct regeneration technologies and the application of cathode materials in non-battery fields. This work is expected to systematically demonstrate the treatment of S-LIBs and is of great significance for the sustainable EVs development of the LIB industry.

8.
Chem Soc Rev ; 53(18): 9378-9418, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39163028

RESUMEN

Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.

9.
J Adv Res ; 63: 129-158, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39167629

RESUMEN

BACKGROUND: Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW: This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.


Asunto(s)
Antígeno CD47 , Inmunoterapia , Neoplasias , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Animales , Transducción de Señal , Antígenos de Diferenciación/inmunología , Antígenos de Diferenciación/metabolismo , Inmunidad Innata , Fagocitosis
10.
Anal Chim Acta ; 1320: 343021, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142790

RESUMEN

BACKGROUND: As persistent organic pollutants (POPs), the accumulation of p-acetylaminophenol (PAT) and p-aminophenol (PAP) in water can seriously damage the health of plants and animals, ultimately leading to threats to human health and safety. Electrochemical sensors have the advantages of being fast, inexpensive, and accurate compared to the complex, expensive, and cumbersome conventional analytical methods. In this study, we designed and synthesized composites with two-dimensional/three-dimensional (2D/3D) porous structures to construct an efficient electrochemical platform for the simultaneous detection of PAT and PAP. RESULTS: In this work, a novel 3D foamy birnessite Na0.55Mn2O4·1.5H2O@C (SMOH@C) was synthesized, which was composited with 2D ordered mesoporous nanosheets (mNPC) to construct electrochemical sensors detecting PAT and PAP simultaneously. The prepared 2D/3D porous structure of mNPC/SMOH@C increased the exposure of active sites due to its large specific surface area. The introduction of a 3D carbon skeleton altered the charge transfer rate of SMOH@C, and the rich pore structure and oxygen-rich vacancies created favorable conditions for the diffusion and adsorption of PAP and PAT, which enabled the sensitive detection of PAT and PAP. The constructed mNPC/SMOH@C electrochemical sensor could simultaneously detect PAT (1 × 10-7 - 1 × 10-4 M) and PAP (5 × 10-8 - 1 × 10-4 M) with detection limits of 20.4 nM and 30.1 nM, respectively. The sensor has good repeatability (RSD <4 %) and reproducibility (RSD <4 %), and satisfactory recoveries (96.7-102.8 %) were obtained in the analysis of natural water samples. SIGNIFICANCE: In this paper, for the first time, we present the synthesis of 3D foam birnessite and its composite with mNPC for the electrochemical simultaneous detection of PAT and PAP. Our proposed strategy for fabricating 2D/3D porous composites lays the foundation for the design and synthesis of other porous materials. In addition, this study provides new ideas for developing efficient and practical electrochemical sensors for detecting pollutants in aquatic environments.

11.
Sci Adv ; 10(34): eadp6094, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167641

RESUMEN

Flexible tactile sensors play important roles in many areas, like human-machine interface, robotic manipulation, and biomedicine. However, their flexible form factor poses challenges in their integration with wafer-based devices, commercial chips, or circuit boards. Here, we introduce manufacturing approaches, device designs, integration strategies, and biomedical applications of a set of flexible, modular tactile sensors, which overcome the above challenges and achieve cooperation with commercial electronics. The sensors exploit lithographically defined thin wires of metal or alloy as the sensing elements. Arranging these elements across three-dimensional space enables accurate, hysteresis-free, and decoupled measurements of temperature, normal force, and shear force. Assembly of such sensors on flexible printed circuit boards together with commercial electronics forms various flexible electronic systems with capabilities in wireless measurements at the skin interface, continuous monitoring of biomechanical signals, and spatial mapping of tactile information. The flexible, modular tactile sensors expand the portfolio of functional components in both microelectronics and macroelectronics.


Asunto(s)
Electrónica , Diseño de Equipo , Tacto , Tacto/fisiología , Electrónica/instrumentación , Humanos , Dispositivos Electrónicos Vestibles
12.
Adv Healthc Mater ; : e2401919, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155410

RESUMEN

In this study, a new-generation tissue-engineered bone capable of temporally regulating the immune response, balancing proinflammatory and anti-inflammatory activities, and facilitating bone regeneration and repair to address the challenges of delayed healing and nonunion in large-sized bone defects, is innovatively developed. Using the innovative techniques including multiphysics-assisted combined decellularization, side-chain biochemical modification, and sterile freeze-drying, a novel photocurable extracellular matrix hydrogel, methacrylated bone-derived decellularized extracellular matrix (bdECM-MA), is synthesized. After incorporating the bdECM-MA with silicon-substituted calcium phosphate and bone marrow mesenchymal stem cells, the tissue-engineered bone is fabricated through digital light processing 3D bioprinting. This study provides in vitro confirmation that the engineered bone maintains high cellular viability while achieving MPa-level mechanical strength. Moreover, this engineered bone exhibits excellent osteogenesis, angiogenesis, and immunomodulatory functions. One of the molecular mechanisms of the immunomodulatory function involves the inhibition of the p38-MAPK pathway. A pioneering in vivo discovery is that the natural biomaterial-based tissue-engineered bone demonstrates sequential immunomodulatory properties that activate proinflammatory and anti-inflammatory responses in succession, significantly accelerating the repair of bone defects. This study provides a new research basis and an effective method for developing autogenous bone substitute materials and treating large-sized bone defects.

13.
Talanta ; 279: 126602, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059068

RESUMEN

Catechol, a polyphenolic molecule and significant organic chemical intermediate, is a highly dangerous environmental contaminant due to its unpredictable nature and potential harm to both humans and the environment. This study presents the development of Sn MOF@rGO-650, identified as a hollow cube by SEM and TEM, created by carbonizing rGO on the surface of Sn MOF after in situ encapsulation. The Sn MOF@rGO-650 modified glassy carbon electrode was successfully constructed for the electrochemical detection of catechol. Under optimal conditions, the sensor exhibited a detection limit of 33 nM, a linear range of 0.20 µM-28 µM, and good long-term stability and reproducibility. This work proves for the first time that Sn MOF@rGO-650 composites can effectively detect catechol in real environmental water samples, achieving recoveries between 95.7 % and 104.8 %, and is validated in UV spectroscopy, which highlights its potential for practical applications.

14.
Carbohydr Polym ; 342: 122422, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048245

RESUMEN

Zhu-Ling decoction (ZLD), a classical traditional Chinese medicine (TCM) formula, is used for the treatment of chronic kidney diseases. However, the structure and activity of absorbed oligosaccharides (OSs) in ZLD are not clear. In this study, a novel strategy with in vivo characterization, extraction, isolation, activity evaluation was established and applied to identify absorbed anti-inflammatory OSs in ZLD. The results revealed that 30 OSs (22 reducing and 8 non-reducing OSs) and 11 OSs (7 reducing and 4 non-reducing OS) were characterized from ZLD in vitro and in vivo by using UPLC/Q-TOF-MS with PMP derivatization, respectively. Among them, a series of -1 â†’ 3-ß-D-Glcp-OSs were isolated and identified by HPLC-HILIC-UVD-ELSD, SPHPLC-HILIC-RID, monosaccharide composition, MS and 1D/2D-NMR spectroscopy, including laminaritriose, laminaritetraose, laminaripentaose, laminarihexaose, laminariheptaose, laminarioctaose and laminarinonaose. Moreover, the 4 non-reducing absorbed OSs were identified by comparison with reference standards, including sucrose, trehalose, raffinose and stachyose. Among them, laminaritriose, laminaritetraose and laminaripentaose significantly inhibited TNF-α and IL-6 levels in LPS-induced HK-2 cell and exerted significant anti-inflammatory effects via the NF-κB and Akt/mTOR signaling pathways. Together, our work provides a novel strategy for discovery of absorbed anti-inflammatory OSs and broadens new horizons for the discovery of in vivo pharmacodynamic substances in TCM formulas.


Asunto(s)
Antiinflamatorios , Medicamentos Herbarios Chinos , Oligosacáridos , Animales , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Ratones , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Masculino , Lipopolisacáridos , FN-kappa B/metabolismo
15.
Food Chem ; 455: 139851, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824732

RESUMEN

The purpose of this study was to prepare Pickering emulsion with synergistic antibacterial effect using whey protein isolated-citral (WPI-Cit) nanoparticles with eugenol for grape preservation. In this emulsion, eugenol was encapsulated in oil phase. The particle size, ζ-potential, and antibacterial mechanism of the nanoparticles were characterized. The rheological properties, antibacterial effects and preservation effects of WPI-Cit Pickering emulsion were measured. The results showed that the optimal preparation condition was performed at WPI/Cit mass ratio of 1:1, WPI-Cit nanoparticles were found to damage the cell wall and membrane of bacteria and showed more effective inhibition against S. aureus. Pickering emulsion prepared with WPI-Cit nanoparticles exhibited a better antibacterial effect after eugenol was encapsulated in it, which extended the shelf life of grapes when the Pickering emulsion was applied as a coating. It demonstrated that the Pickering emulsion prepared in this study provides a new way to extend the shelf life.


Asunto(s)
Antibacterianos , Emulsiones , Eugenol , Conservación de Alimentos , Nanopartículas , Staphylococcus aureus , Vitis , Proteína de Suero de Leche , Vitis/química , Proteína de Suero de Leche/química , Proteína de Suero de Leche/farmacología , Emulsiones/química , Emulsiones/farmacología , Eugenol/química , Eugenol/farmacología , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Conservación de Alimentos/métodos , Staphylococcus aureus/efectos de los fármacos , Tamaño de la Partícula
16.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874794

RESUMEN

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

17.
Talanta ; 276: 126206, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749163

RESUMEN

As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 µM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.

18.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794056

RESUMEN

Regional lung ventilation assessment is a critical tool for the early detection of lung diseases and postoperative evaluation. Biosensor-based impedance measurements, known for their non-invasive nature, among other benefits, have garnered significant attention compared to traditional detection methods that utilize pressure sensors. However, solely utilizing overall thoracic impedance fails to accurately capture changes in regional lung air volume. This study introduces an assessment method for lung ventilation that utilizes impedance data from the five lobes, develops a nonlinear model correlating regional impedance with lung air volume, and formulates an approach to identify regional ventilation obstructions based on impedance variations in affected areas. The electrode configuration for the five lung lobes was established through numerical simulations, revealing a power-function nonlinear relationship between regional impedance and air volume changes. An analysis of 389 pulmonary function tests refined the equations for calculating pulmonary function parameters, taking into account individual differences. Validation tests on 30 cases indicated maximum relative errors of 0.82% for FVC and 0.98% for FEV1, all within the 95% confidence intervals. The index for assessing regional ventilation impairment was corroborated by CT scans in 50 critical care cases, with 10 validation trials showing agreement with CT lesion localization results.


Asunto(s)
Impedancia Eléctrica , Pulmón , Ventilación Pulmonar , Pruebas de Función Respiratoria , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Pulmón/fisiopatología , Pruebas de Función Respiratoria/métodos , Ventilación Pulmonar/fisiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Tomografía Computarizada por Rayos X/métodos , Técnicas Biosensibles/métodos , Electrodos
19.
Sci Adv ; 10(12): eadm9314, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507494

RESUMEN

Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. Here, we develop a set of millimeter-scale, chip-less, and battery-less magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.


Asunto(s)
Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Animales , Ratas , Prótesis e Implantes , Fenómenos Físicos , Fenómenos Magnéticos
20.
Small ; 20(29): e2310217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38361221

RESUMEN

In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.


Asunto(s)
Ciclodextrinas , Oro , Nanotubos de Carbono , Rutina , Titanio , Rutina/química , Rutina/análisis , Oro/química , Ciclodextrinas/química , Nanotubos de Carbono/química , Titanio/química , Estructuras Metalorgánicas/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA