Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39405134

RESUMEN

In this article, the multistability problem of almost periodic solutions of fuzzy competitive neural networks (FCNNs) with time-varying delays is investigated. Considering more general activation functions, which are nonmonotonic and nonlinear, and incorporating the almost periodic property of the parameters in FCNNs, sufficient conditions for the multistability of almost periodic solutions are given. ∏r=1n(Lr+1) stable almost periodic solutions are obtained, where Lr depends on the geometric features of the activation functions, which enriches and extends the research on multistability in fuzzy systems. Furthermore, the extended domain of attraction based on the original state space is presented. Finally, numerical simulations are provided to verify the conclusions of this article.

2.
J Hazard Mater ; 480: 136145, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39405680

RESUMEN

Currently, a comprehensive understanding of the pollution risks of microplastics (MPs) in urban river ecosystems is still lacking. This study investigated the spatial distribution and morphological characteristics of MPs in surface waters of major rivers in Shenzhen, a megacity in China, using laser direct infrared (LDIR) imaging. A promisingly comprehensive risk assessment method, MultiMP, was first proposed in this study, taking into account the multidimensional characteristics of MPs including abundance, size, shapes, and polymer types. The results showed that MPs were widespread and highly heterogeneous, and the abundance of MPs ranged from 38 to 18380 particles/L, with an average of 2305 particles/L. Morphologically, polyamide (PA) (average 53.7 %), 30-50 µm (73.8 %), and pellet (65.7 %) were the predominant MPs types. Driving factors analyses revealed geographical distance, salinity, water temperature, and total nitrogen had relatively higher impacts on the abundance and morphology of MPs. The MultiMP results indicated that most of the river sampling sites and five major basins in Shenzhen were at moderate to high-risk levels. Polymer type and abundance had a relatively high impact on the environmental risk of MPs in the region. These findings contribute to improving the insights and management of the MPs pollution risks in megacity water bodies.

3.
Food Funct ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39420807

RESUMEN

Postbiotics have recently garnered substantial research attention, especially in obesity research. In this study, upon comparing the proliferative effects of three food-derived media-skim milk, soy milk, and almond milk-on Lactiplantibacillus plantarum J26 (L. plantarum J26), skim milk was found to be the most effective. The metabolomic analysis further unveiled that the metabolites produced by the strain cultured in skim milk influenced the greatest number of lipid metabolism-associated pathways. Additionally, to better preserve heat-sensitive substances, ultrasound and pasteurization were combined and used here for inactivation. L. plantarum J26 postbiotics, prepared through pasteurization combined with 400 W ultrasound treatment for 30 min, exhibited the most effectiveness at inhibiting cellular triglyceride accumulation, reducing its level to 0.99 mg per 104 CFU. The prepared postbiotics significantly reduced the increase in multiple indicators, including body weight, blood lipids, and adipokines in obese mice (p < 0.05). Following treatment, liver tissue damage as well as white and brown adipose tissue damage were also markedly improved in obese mice. According to gut microbiota sequencing, the postbiotic intervention increased Lactobacillus and Bifidobacterium abundances but reduced the abundances of obesity-associated Faecalibacterium and Erysipelotrichaceae. Additionally, the postbiotics elevated the acetate, propionate, and butyrate levels by 14.95%, 23.89%, and 8.31%, respectively. High postbiotic doses significantly upregulated the expression of GPR41/GPR43, short-chain fatty acid (SCFA) receptor genes, in the liver and adipose tissues (p < 0.05), thus correcting the obesity-induced anomalies in the SCFAs-GPR41/GPR43 signaling pathway. This research offers compelling evidence supporting the use of edible postbiotics in targeted obesity regulation.

4.
Sci Total Environ ; 950: 175278, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122026

RESUMEN

Urban waterfront areas are dynamic interfaces where human and natural systems converge, forming complex ecosystems that encompass social, economic, and environmental elements. These areas offer ecological benefits and aesthetic experiences. However, a disparity between social aesthetic preferences and vegetation diversity along riverbanks impedes the integration of ecological and aesthetic values. To address this, a plant community optimization strategy based on a coupling coordination degree model (CCDM) is proposed. Using the Xietang River in Suzhou, China as a case study, surveys were conducted on 33 woody plant plots and 60 herbaceous plant plots, assessing plant diversity with Shannon-Wiener, richness, and Pielou indices. Landscape beauty was evaluated by 87 respondents using the Scenic Beauty Estimation method. Using six representative plant communities as mediators, CCDM was applied to quantitatively analyze the coordination between plant diversity and aesthetics. Based on this analysis and considering factors influencing plant diversity and scenic beauty, plant community optimization strategies were devised to enhance the coordinated development of ecological diversity and aesthetics, fostering a synergistic improvement in ecological and aesthetic quality. Results revealed a range of coupling coordination across plant communities (0.203 to 0.947), encompassing various types. Linear regression analysis demonstrated a non-linear relationship between plant diversity and landscape beauty, influenced by independent yet partially overlapping factors. Hence, both aspects should be simultaneously considered in the planning and enhancement of riverbank areas. The coupling coordination degree offers a comprehensive understanding of harmonizing plant diversity and aesthetic value, providing a quantitative and objective approach to integrated research. This perspective extends beyond urban waterfront landscapes, holding significance for achieving dual goals of ecology and social services in urban design and landscape management.


Asunto(s)
Biodiversidad , Estética , Ríos , China , Conservación de los Recursos Naturales/métodos , Plantas , Ecosistema , Belleza , Ciudades
5.
Cancer Biol Med ; 21(9)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982978

RESUMEN

Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.


Asunto(s)
Especies Reactivas de Oxígeno , Transducción de Señal , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
6.
Environ Pollut ; 359: 124612, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053800

RESUMEN

Arsenobetaine (AsB), a non-toxic arsenic (As) compound found in marine fish, structurally resembles betaine (GB), a common methyl donor in organisms. This study investigates the potential role of GB in AsB synthesis in marine medaka (Oryzias melastigma) using metabolomic analysis. Dietary exposure to arsenate (As(V)) and varying GB concentrations (0.05% and 0.1% in diets) increased total As and AsB bioaccumulation, particularly in marine medaka muscle. Metabolomic analysis revealed that GB played a crucial role in promoting up-regulation in methylthioadenosine (MTA) by modulating the methionine cycle and down-regulation in glutathione (GSH) by modulating the glutathione cycle. Methionine metabolism and GSH, potentially binding again to exogenous GB, could synchronously produce more non-toxic AsB. Combining verification experiments of differential metabolites of Escherichia coli in vitro, GB, GSH, S-adenosylmethionine (SAM), and arsenocholine (AsC) entered methionine and glutathione metabolism pathways to generate more AsB. These findings underscore the GB's crucial regulatory role in modulating the synthesis of AsB. This study provides vital insights into the interplay between the structural analogs GB and AsB, offering specific strategies to enhance the detoxification mechanisms of marine fish in As-contaminated environments.


Asunto(s)
Arsenicales , Betaína , Metaboloma , Oryzias , Contaminantes Químicos del Agua , Animales , Oryzias/metabolismo , Betaína/metabolismo , Betaína/análogos & derivados , Arsenicales/metabolismo , Metaboloma/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Glutatión/metabolismo , Metionina/metabolismo , Metionina/análogos & derivados , Arseniatos/toxicidad , Arseniatos/metabolismo
7.
Int J Surg ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38896865

RESUMEN

INTRODUCTION: The postoperative recurrence of gastric cancer has a significant impact on the overall prognosis of patients. Therefore, accurately predicting the postoperative recurrence of gastric cancer is crucial. METHODS: This retrospective study gathered data from 2,813 gastric cancer patients who underwent radical surgery between 2011 and 2017 at two medical centers. Follow-up was extended until May 2023, and cases were categorized as recurrent or non-recurrent based on postoperative outcomes. Clinical pathological information and imaging data were collected for all patients. A new deep learning signature (DLS) was generated using pretreatment CT images, based on a pre-trained baseline (a customized Resnet50), for predicting postoperative recurrence. The deep learning fusion signature (DLFS) was created by combining the score of DLS with the weighted values of identified clinical features. The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. Survival curves were plotted to investigate the differences between DLFS and prognosis. RESULTS: In this study, 2813 patients with gastric cancer (GC) were recruited and allocated into training, internal validation, and external validation cohorts. The DLFS was developed and assessed for its capability in predicting the risk of postoperative recurrence. The DLFS exhibited excellent performance with AUCs of 0.833 (95% CI, 0.809-0.858) in the training set, 0.831 (95% CI, 0.792-0.871) in the internal validation set, and 0.859 (95% CI, 0.806-0.912) in the external validation set, along with satisfactory calibration across all cohorts (P>0.05). Furthermore, the DLFS model significantly outperformed both the clinical model and DLS (P<0.05). High-risk recurrent patients exhibit a significantly poorer prognosis compared to low-risk recurrent patients (P<0.05). CONCLUSIONS: The integrated model developed in this study, focusing on GC patients undergoing radical surgery, accurately identifies cases at high risk of postoperative recurrence and highlights the potential of DLFS as a prognostic factor for GC patients.

8.
Front Biosci (Landmark Ed) ; 29(5): 198, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812324

RESUMEN

BACKGROUND: DELLA protein is a crucial factor which played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, little is known about the function and information of DELLA protein in Chinese cabbage. METHODS: Using 5 DELLA gene sequences in Arabidopsis Thaliana as probes, 5 DELLA genes in Chinese cabbage were identified by Blast search in Chinese cabbage database (Brassica database (BRAD)). The National Center for Biotechnology Information (NCBI), ExPaSy, SWISS-MODEL, DNAMAN, MEGA 11, PlantCARE were used to identify and analyze the DELLA gene family of Chinese cabbage. Gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The function of BraA10gRGL3 was verified by overexpression and phenotypic analysis of BraA10gRGL3 and yeast hybrid. RESULTS: In this study, 5 BraDELLAs homologous to Arabidopsis thaliana were identified and cloned based on the Brassica database, namely, BraA02gRGL1, BraA05gRGL2, BraA10gRGL3, BraA06gRGA and BraA09gRGA. All BraDELLAs contain the DELLA, TVHYNP, and GRAS conserved domains. Cis-element analysis revealed that the promoter regions of these 5 DELLA genes all contain light-responsive elements, TCT motif, I-box, G-box, and box 4, which are associated with GA signaling. Transcriptome analysis results proved that the expression of BraA02gRGL1, BraA05gRGL2, and BraA10gRGL3 in Y2 at different growth stages were lower than them in Y7, which is consistent with the phenotype that Y7 exhibited stronger stress tolerance than Y2. It is worth emphasizing that even through the overexpression of BraA10gRGL3-Y7 in Arabidopsis resulted in smaller leaf size and lower fresh weight compared to the wild type (WT) Arabidopsis: Columbia, a stronger response to abiotic stresses was observed in BraA10gRGL3-Y7. It indicated that BraA10gRGL3-Y7 can improve the stress resistance of plants by inhibiting their growth. Moreover, the yeast two-hybrid experiment confirmed that BraA10gRGL3-Y7 can interacted with BraA05gGID1a-Y7, BraA04gGID1b1, BraA09gGID1b3-Y2, and BraA06gGID1c, whereas BraA10gRGL3-Y2 cannot interact with any BraGID1. CONCLUSIONS: Collectively, BraDELLAs play important role in plant development and response to abiotic stress. The differences in amino acid sequences between BraA10gRGL3-Y2 and BraA10gRGL3-Y7 may result in variations in their protein binding sites, thus affecting their interaction with the BraGID1 family proteins. This systematic analysis lays the foundation for further study of the functional characteristics of DELLA genes of Chinese cabbage.


Asunto(s)
Brassica rapa , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética
9.
Food Chem ; 452: 139501, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728887

RESUMEN

To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.


Asunto(s)
Almacenamiento de Alimentos , Lacticaseibacillus paracasei , Leche , Polvos , Animales , Leche/química , Leche/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/crecimiento & desarrollo , Lacticaseibacillus paracasei/química , Polvos/química , Alimentos Fortificados/análisis
10.
J Hazard Mater ; 471: 134323, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640680

RESUMEN

Sensitive detection and point-of-care test of bacterial pathogens is of great significance in safeguarding the public health worldwide. Inspired by the characteristics of horseradish peroxidase (HRP), we synthesized a hybrid nanoflower with peroxidase-like activity via a three-component self-assembled strategy. Interestingly, the prepared nanozyme not only could act as an alternative to HRP for colorimetric biosensing, but also function as a unique signal probe that could be recognized by a pregnancy test strip. By combining the bifunctional properties of hybrid nanoflower, isothermal amplification of LAMP, and the specific recognition and non-specific cleavage properties of CRISPR/Cas12a system, the dual-readout CRISPR/Cas12a biosensor was developed for sensitive and rapid detection of Salmonella enterica. Moreover, this platform in the detection of Salmonella enterica had limits of detection of 1 cfu/mL (colorimetric assay) in the linear range of 101-108 cfu/mL and 102 cfu/mL (lateral flow assay) in the linear range of 102-108 cfu/mL, respectively. Furthermore, the developed biosensor exhibited good recoveries in the spiked samples (lake water and milk) with varying concentrations of Salmonella enterica. This work provides new insights for the design of multifunctional nanozyme and the development of innovative dual-readout CRISPR/Cas system-based biosensing platform for the detection of pathogens.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Salmonella enterica , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Técnicas Biosensibles/métodos , Leche/microbiología , Técnicas de Amplificación de Ácido Nucleico/métodos , Nanoestructuras/química , Colorimetría/métodos , Animales , Límite de Detección , Técnicas de Diagnóstico Molecular
11.
Compr Rev Food Sci Food Saf ; 23(1): e13295, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284598

RESUMEN

Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.


Asunto(s)
Inocuidad de los Alimentos , Nanotecnología
12.
Food Chem X ; 21: 101055, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38173901

RESUMEN

The formula of food for special medical purpose has a direct impact on physicochemical stability, especially in hot climes and high temperature transport storage environments. An accelerated test (50 °C for 7 weeks) was used to analyze the mechanism of the physicochemical instability of formula A with lactose and maltodextrin, and formula B with maltodextrin. Deep dents and wrinkles were observed on the surface of the formula B, and more fat globules covered the surface of formula A particles after storage for a long time. Significantly higher amounts of furosine and Nε-carboxymethl-l-lysine (CML) were formed and the loss of available lysine was greater in formula A than in formula B. No significant difference was observed in lipid oxidation indicators between the two formulas. The results of this research demonstrated lactose was more active than maltodextrin and led to physicochemical instability.

13.
Parasitology ; 151(2): 185-190, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38186337

RESUMEN

Parasitoid wasps, notably egg parasitoids of the family Eupelmidae (Hymenoptera: Chalcidoidea), a key natural enemy of insect pests, offer a sustainable approach to pest management in agriculture. This study investigated the venom apparatus's developmental dynamics across 4 species of eupelmid egg parasitoids: Anastatus. japonicus, Anastatus fulloi, Mesocomys trabalae and Mesocomys albitarsis. A comprehensive anatomical investigation revealed differences in the dimensions of the venom apparatus across different developmental stages in adult females. We found that the venom apparatus of these 4 studied species consists of a venom gland and a reservoir with an associated Dufour's gland. As the length of post-emergence increases, a significant enlargement in the venom apparatus is evident across all the studied parasitoid species. Notably, M. albitarsis consistently exhibites the shortest venom gland length, whereas that of A. fulloi is the longest among the observed species. At the high day age, the width of venom glands of the 2 Mesocomys species surpasses those of the Anastatus species; for the volume of the venom reservoir, there is a steady increase in all 4 species before the age of 6­7 days, with a decline on 8th day, especially for A. japonicus. This research provided new insights into the developmental trajectories of venom apparatus in eupelmid egg parasitoids and the potential impact of venom potency on their success.


Asunto(s)
Avispas , Femenino , Animales , Agricultura
14.
Environ Toxicol ; 39(3): 1323-1334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37955338

RESUMEN

Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.


Asunto(s)
Arsénico , Arsenitos , Humanos , Ratones , Animales , Dieta Alta en Grasa , Arsenitos/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Hígado , Arsénico/metabolismo , Metabolismo de los Lípidos
15.
Talanta ; 269: 125457, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039678

RESUMEN

Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples.


Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Escherichia coli O157 , Escherichia coli O157/genética , Hemina , Colorimetría/métodos , ADN Complementario , Peróxido de Hidrógeno , Aptámeros de Nucleótidos/genética , Fenómenos Magnéticos , Microbiología de Alimentos
16.
Environ Res ; 244: 117937, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109958

RESUMEN

Schwertmannite (SCH) is a promising material for adsorbing inorganic arsenic (As). We synthesized SCH nanoparticles (nano-SCH) via a modified chemical oxidation method and investigated the application of nano-SCH for the remediation of As-contaminated soils. The production of nano-SCH was successfully prepared using the persulfate oxidation method with carboxymethyl cellulose stabilization. The spherical structure of the nano-SCH particles had an average hydrodynamic diameter of 296 nm with high specific surface areas (108.9 m2/g). Compared with SCH synthesized via the H2O2 oxidation method, the percentage of Fe3+ precipitation in nano-SCH synthesis increased from 63.2% to 84.1%. The inorganic As adsorption capacity of nano-SCH improved by 2.27 times at solution pH = 6. After remediation of heavily As-contaminated soils by using 5% nano-SCH, the leachability of inorganic As rapidly decreased to 0.01% in 30 d. Correspondingly, the immobilization efficiencies of inorganic As in soil reached >99.9%. The inorganic As fractions in treated soil shifted from specifically and nonspecifically bound forms to amorphous and crystalline hydrous oxide-bound fractions. After treatment with 5% nano-SCH for 60 d, soil pH slightly decreased from 5.47 to 4.94; by contrast, soil organic matter content increased by 20.9%. Simultaneously, dehydrogenase concentration in soil decreased by 22.4%-34.7% during the remediation process. These changes in soil properties and As immobilization jointly decreased microbial activity and initiated the re-establishment of bacterial communities in the soil. In summary, this study presents a novel and high-productivity technology for nano-SCH synthesis and confirms the high As immobilization effectiveness of nano-SCH in the remediation of As-contaminated soils.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Compuestos de Hierro , Contaminantes del Suelo , Arsénico/análisis , Carboximetilcelulosa de Sodio , Peróxido de Hidrógeno , Suelo/química , Contaminantes del Suelo/análisis
17.
J Agric Food Chem ; 71(46): 18024-18036, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37939378

RESUMEN

Anthocyanins (AOCs) are phenols that are readily soluble in water and are commonly present in plants. The chemical instability of AOC, however, causes it to be severely limited in terms of extraction and purification. Hence, in order to obtain efficient and stable extraction of AOC, we designed hydrophilic multifunctional monomer covalent organic framework molecularly imprinted polymers (HMCMIPs) as adsorbents. The functional reagent, p-aminobenzenesulfonic acid (ASA), was added to this material during synthesis to facilitate the sulfonation modification of covalent organic frameworks (COFs), which enhanced its affinity for hydrophilic guests (cyanidin-3-O-glucoside, the representative nutritional and functional ingredient in AOC). With ASA serving as a terminator, overextension of the material to form micron-level cross-linked structures is prevented, thereby increasing its surface area and mass transfer efficiency. The biomimetic receptors were then created by integrating MIPs into sulfonated COFs in order to create multiple binding sites specific for C3G recognition. HMCMIPs exhibited excellent adsorption capacity (1566 mg/g) and superior selectivity (selectivity coefficient >12) for C3G. It has been demonstrated that high purity (93.72%) C3G can be obtained rapidly and efficiently by utilizing HMCMIPs. There may be a potential benefit to the synthesis strategy of HMCMIPs for the extraction of specific active ingredients in the future.


Asunto(s)
Estructuras Metalorgánicas , Impresión Molecular , Polímeros Impresos Molecularmente , Antocianinas , Polímeros/química , Biomimética , Glucósidos , Adsorción , Extracción en Fase Sólida
18.
Biology (Basel) ; 12(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37237513

RESUMEN

Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.

19.
Acta Pharm Sin B ; 13(2): 879-896, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873187

RESUMEN

Immunotherapy combined with effective therapeutics such as chemotherapy and photodynamic therapy have been shown to be a successful strategy to activate anti-tumor immune responses for improved anticancer treatment. However, developing multifunctional biodegradable, biocompatible, low-toxic but highly efficient, and clinically available transformed nano-immunostimulants remains a challenge and is in great demand. Herein, we report and design of a novel carrier-free photo-chemotherapeutic nano-prodrug COS-BA/Ce6 NPs by combining three multifunctional components-a self-assembled natural small molecule betulinic acid (BA), a water-soluble chitosan oligosaccharide (COS), and a low toxic photosensitizer chlorin e6 (Ce6)-to augment the antitumor efficacy of the immune adjuvant anti-PD-L1-mediated cancer immunotherapy. We show that the designed nanodrugs harbored a smart and distinctive "dormancy" characteristic in chemotherapeutic effect with desired lower cytotoxicity, and multiple favorable therapeutic features including improved 1O2 generation induced by the reduced energy gap of Ce6, pH-responsiveness, good biodegradability, and biocompatibility, ensuring a highly efficient, synergistic photochemotherapy. Moreover, when combined with anti-PD-L1 therapy, both nano-coassembly based chemotherapy and chemotherapy/photodynamic therapy (PDT) could effectively activate antitumor immunity when treating primary or distant tumors, opening up potentially attractive possibilities for clinical immunotherapy.

20.
Toxicol Appl Pharmacol ; 464: 116447, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889513

RESUMEN

Although gut microbes can affect the accumulation and metabolism of arsenic (As), the microbes contributing to these processes remain largely unknown. Therefore, this study aimed to investigate the bioaccumulation and biotransformation of arsenate [As(V)] and arsenobetaine (AsB) in mice with a disordered gut microbiome. We used cefoperazone (Cef) to construct a mouse model of gut microbiome disruption along with 16S rRNA sequencing to elucidate the effect of gut microbiome destruction on the biotransformation and bioaccumulation of As(V) and AsB. This revealed the role of specific bacteria in As metabolism. Gut microbiome destruction increased the bioaccumulation of As(V) and AsB in various organs and reduced the excretion of As(V) and AsB in the feces. Further, gut microbiome destruction was found to be important for the biotransformation of As(V). Interference with Cef can significantly decrease Blautia and Lactobacillus while increasing Enterococcus, leading to increase As accumulation in mice and enhanced methylation. We also identified Lachnoclostridium, Erysipelatoclostridium, Blautia, Lactobacillus, and Enterococcus as biomarkers involved in As bioaccumulation and biotransformation. In conclusion, specific microbes can increase As accumulation in the host, exacerbating its potential health risks.


Asunto(s)
Arsénico , Animales , Ratones , Arsénico/toxicidad , Arsénico/metabolismo , Bioacumulación , ARN Ribosómico 16S/genética , Biotransformación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA