Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39301781

RESUMEN

Brief, low-cost growth mindset interventions improving academic-related outcomes can be valuable. However, less is known regarding their effectiveness on learning motivation, behaviors, and academic performance in non-Western cultures like China. This study aimed to examine the effects of a single-session growth mindset intervention on Chinese junior secondary students during the COVID-19 pandemic. We recruited 618 Chinese junior secondary school students from two schools and cluster-randomly assigned them to be the intervention school (n = 311) or the control school (n = 307). Data was collected during the fall semester of 2019 and the spring semester of 2020. Compared with the control school, students in the intervention school reported stronger growth mindset (partial η2 = 0.02, p < .001), academic self-efficacy (partial η2 = 0.02, p < .001), study engagement (partial η2 = 0.01, p = .041), and improved Chinese performance (partial η2 = 0.07, p < .001), with lower helpless attributions (partial η2 = 0.03, p < .001) over time. The intervention had direct and indirect effects (i.e., via the growth mindset) on helpless attributions and academic self-efficacy, with an indirect effect on study engagement.The results support the effectiveness of the brief growth mindset intervention.

2.
Front Psychol ; 15: 1454447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246315

RESUMEN

Background: This systematic review and meta-analysis aim to evaluate the effects of cognitively engaging Physical Activity (PA) interventions on Executive Function (EF) in children and adolescents. It examines how different intervention modalities, durations, frequencies, and session lengths influence these effects. Methods: We followed the PRISMA guidelines and searched PubMed, SPORTDiscus, Embase, and Web of Science for relevant studies. Studies were included if they were Randomized Controlled Trials (RCTs) focusing on PA with cognitive elements targeting EF in healthy children and adolescents. Data were extracted and effect sizes computed using Standardized Mean Differences (SMDs). Results: From an initial 1,635 articles, 23 studies with 2,857 participants were included. The overall effect of cognitively engaging PA on EF was significant (SMD = 0.32, 95% CI 0.14-0.51), with notable improvements in inhibitory control (SMD = 0.35) and working memory (SMD = 0.34). High heterogeneity was observed (I 2 = 91.1%). Moderator analyses revealed that interventions lasting more than 6 weeks, with sessions over 20 min and conducted more than twice a week, were particularly effective. Conclusion: Cognitively engaging PA interventions positively impact EF in children and adolescents, particularly in inhibitory control. Effective interventions are characterized by longer duration, higher frequency, and extended session lengths. These findings underscore the importance of integrating cognitive challenges within PA programs to enhance EF, warranting future research and practical applications in educational and developmental settings.

3.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274839

RESUMEN

Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.


Asunto(s)
Simulación del Acoplamiento Molecular , Enfermedades Neurodegenerativas , Unión Proteica , Receptor trkB , Receptor trkB/metabolismo , Receptor trkB/agonistas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/agonistas
4.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223509

RESUMEN

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Glucemia , Proteínas Portadoras , Diabetes Mellitus Experimental , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Animales , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas Portadoras/metabolismo , Glucemia/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Fosforilación , Función Ventricular Izquierda/efectos de los fármacos , Tiorredoxinas/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Proteómica , Ratas , Mapas de Interacción de Proteínas , Proteínas de Ciclo Celular
5.
FEBS J ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241105

RESUMEN

Calcineurin is a serine/threonine protein phosphatase that is highly conserved from yeast to human and plays a critical role in many physiological processes. Regulators of calcineurin (RCANs) are a family of endogenous calcineurin regulators, which are capable of inhibiting the catalytic activity of calcineurin in vivo and in vitro. In this study, we first characterized the biochemical properties of yeast calcineurin and its endogenous regulator Rcn1, a yeast homolog of RCAN1. Our data show that Rcn1 inhibits yeast calcineurin toward pNPP substrate with a noncompetitive mode; and Rcn1 binds cooperatively to yeast calcineurin through multiple low-affinity interactions at several docking regions. Next, we reinvestigated the mechanism underlying the inhibition of mammalian calcineurin by RCAN1 using a combination of biochemical, biophysical, and computational methods. In contrast to previous observations, RCAN1 noncompetitively inhibits calcineurin phosphatase activity toward both pNPP and phospho-RII peptide substrates by targeting the enzyme active site in part. Re-analysis of previously reported kinetic data reveals that the RCAN1 concentrations used were too low to distinguish between the inhibition mechanisms [Chan B et al. (2005) Proc Natl Acad Sci USA 102, 13075]. The results presented in this study provide new insights into the interaction between calcineurin and RCAN1/Rcn1.

6.
Front Microbiol ; 15: 1459124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257615

RESUMEN

Pasteurella multocida toxin (PMT) is one of the most important virulence factors of Pasteurella multocida type D. Pasteurella multocida infection has caused enormous economic losses in the pig farming industry. Although it is well known that this bacterial infection causes progressive atrophic rhinitis, its effects on other organ tissues in pigs are unclear. In this study, PMT was expressed and purified, and the cytotoxic effects of PMT on four types of swine cells, LLC-PK1, PAM, IPEC, and ST, were investigated. LLC-PK1 exhibited the highest sensitivity to the cytotoxic effects of PMT. Our studies revealed that a PMT concentration of 0.1 µg/kg can lead to weight loss, whereas a PMT concentration of 0.5 µg/kg can lead to death in mice. PMT causes damage to the intestines, kidneys, lungs, livers, and spleens of mice. Furthermore, PMT caused acute death in pigs at treatment concentrations greater than 5 µg/kg; at PMT concentration of 2.5 µg/kg, weight loss occurred until death. PMT mainly caused damage to the hearts, lungs, livers, spleens and kidneys of pigs. The organ coefficient showed that damage to the heart and kidneys was the most severe and caused the renal pelvis and renal pyramid to dissolve and become cavitated. Pathology revealed hemorrhage in the lungs, liver, and spleen, and the kidneys were swollen and vacuolated, which was consistent with the damaged target organs in the mice. In conclusion, these findings demonstrate that PMT is extremely toxic in vitro and in vivo, causing damage to various organs of the body, especially the kidneys and lungs. This study provides a theoretical basis for the in-depth exploration of the cytotoxic effects of PMT on target organs.

7.
J Nanobiotechnology ; 22(1): 481, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135072

RESUMEN

Photothermal therapy (PTT) for cancers guided by optical imaging has recently shown great potential for precise diagnosis and efficient therapy. The second near-infrared window (NIR-II, 1000-1700 nm) fluorescence imaging (FLI) is highly desirable owing to its good spatial and temporal resolution, deep tissue penetration, and negligible tissue toxicity. Organic small molecules are attractive as imaging and treatment agents in biomedical research because of their low toxicity, fast clearance rate, diverse structures, ease of modification, and excellent biocompatibility. Various organic small molecules have been investigated for biomedical applications. However, there are few reports on the use of croconaine dyes (CRs), especially NIR-II emission CRs. To our knowledge, there have been no prior reports of NIR-II emissive small organic photothermal agents (SOPTAs) based on CRs. Herein, we report a croconaine dye (CR-TPE-T)-based nanoparticle (CR NP) with absorption and fluorescence emission in the NIR-I and NIR-II windows, respectively. The CR NPs exhibited intense NIR absorption, outstanding photothermal properties, and good biological compatibility. In vivo studies showed that CR NPs not only achieved real-time, noninvasive NIR-II FLI of tumors, but also induced significant tumor ablation with laser irradiation guided by imaging, without apparent side effects, and promoted the formation of antitumor immune memory in a colorectal cancer model. In addition, the CR NPs displayed efficient inhibition of breast tumor growth, improved longevity of mice and triggered efficient systemic immune responses, which further inhibited tumor metastasis to the lungs. Our study demonstrates the great potential of CRs as therapeutic agents in the NIR-II region for cancer diagnosis.


Asunto(s)
Ratones Endogámicos BALB C , Nanopartículas , Imagen Óptica , Terapia Fototérmica , Animales , Terapia Fototérmica/métodos , Ratones , Femenino , Imagen Óptica/métodos , Línea Celular Tumoral , Nanopartículas/química , Nanopartículas/uso terapéutico , Humanos , Colorantes Fluorescentes/química , Rayos Infrarrojos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia
8.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39204841

RESUMEN

Most real-time semantic segmentation networks use shallow architectures to achieve fast inference speeds. This approach, however, limits a network's receptive field. Concurrently, feature information extraction is restricted to a single scale, which reduces the network's ability to generalize and maintain robustness. Furthermore, loss of image spatial details negatively impacts segmentation accuracy. To address these limitations, this paper proposes a Multiscale Context Pyramid Pooling and Spatial Detail Enhancement Network (BMSeNet). First, to address the limitation of singular semantic feature scales, a Multiscale Context Pyramid Pooling Module (MSCPPM) is introduced. By leveraging various pooling operations, this module efficiently enlarges the receptive field and better aggregates multiscale contextual information. Moreover, a Spatial Detail Enhancement Module (SDEM) is designed, to effectively compensate for lost spatial detail information and significantly enhance the perception of spatial details. Finally, a Bilateral Attention Fusion Module (BAFM) is proposed. This module leverages pixel positional correlations to guide the network in assigning appropriate weights to the features extracted from the two branches, effectively merging the feature information of both branches. Extensive experiments were conducted on the Cityscapes and CamVid datasets. Experimental results show that the proposed BMSeNet achieves a good balance between inference speed and segmentation accuracy, outperforming some state-of-the-art real-time semantic segmentation methods.

9.
Sensors (Basel) ; 24(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39205000

RESUMEN

Deep learning has recently made significant progress in semantic segmentation. However, the current methods face critical challenges. The segmentation process often lacks sufficient contextual information and attention mechanisms, low-level features lack semantic richness, and high-level features suffer from poor resolution. These limitations reduce the model's ability to accurately understand and process scene details, particularly in complex scenarios, leading to segmentation outputs that may have inaccuracies in boundary delineation, misclassification of regions, and poor handling of small or overlapping objects. To address these challenges, this paper proposes a Semantic Segmentation Network Based on Adaptive Attention and Deep Fusion with the Multi-Scale Dilated Convolutional Pyramid (SDAMNet). Specifically, the Dilated Convolutional Atrous Spatial Pyramid Pooling (DCASPP) module is developed to enhance contextual information in semantic segmentation. Additionally, a Semantic Channel Space Details Module (SCSDM) is devised to improve the extraction of significant features through multi-scale feature fusion and adaptive feature selection, enhancing the model's perceptual capability for key regions and optimizing semantic understanding and segmentation performance. Furthermore, a Semantic Features Fusion Module (SFFM) is constructed to address the semantic deficiency in low-level features and the low resolution in high-level features. The effectiveness of SDAMNet is demonstrated on two datasets, revealing significant improvements in Mean Intersection over Union (MIOU) by 2.89% and 2.13%, respectively, compared to the Deeplabv3+ network.

10.
World Neurosurg ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197706

RESUMEN

BACKGROUND: Chiari malformation type I (CM-1) is a complex disorder in which tonsillar herniation through the foramen magnum manifests with a spectrum of clinical symptoms. This work analyzes morphometric and volumetric characteristics of CM-1 patients. METHODS: With Institutional Review Board (IRB) approval, we retrospectively reviewed a total of 72 adult CM-1 patients and 26 healthy adult volunteers who underwent volumetric magnetic resonance brain imaging. Clinical data was retrospectively extracted from the electronic medical record. We analyzed multi-dimensional morphometric and volumetric features within the posterior cranial fossa and correlated these features with syrinx formation and the decision to undergo surgical decompression. RESULTS: In our study, CM-1 patients had decreased cerebellar, brainstem and 4th ventricular volumes but larger tonsillar volume with increased total tonsillar length. CM-1 patients who underwent surgery had significantly more neural tissue within the cross-sectional area of cisterna magna. Logistic regression demonstrated that combining neural tissue at foramen magnum with cerebellar & 4th ventricular volumes led to great degree of correlation with syrinx formation (AUC 0.911). CONCLUSIONS: Our findings suggest that the amount of tissue at the foramen magnum correlates with CM-1 patients who underwent decompressive surgery, more so than tonsillar length. Additionally, the combination of neural tissue at foramen magnum, cerebellar & 4th ventricular volumes led to great degree of correlation with syrinx formation. Together, these findings suggest that a global compressive phenomenon within the posterior fossa leads to CM-1 symptomatology and syrinx formation.

11.
Environ Sci Process Impacts ; 26(8): 1417-1428, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39007296

RESUMEN

Tetracycline (TC) and Cu(II) coexist commonly in various waters, which may infiltrate into the subterranean environment through runoff and leaching, resulting in substantial ecological risks. However, the underlying mechanisms why Cu(II) affects the transport of TC in porous media remain to be further explored and supported by more evidence, especially the role of complexation. In this study, the transport of TC with coexisting Cu(II) was comprehensively explored with column experiments and density functional theory (DFT) calculation. At natural environmental concentrations, Cu(II) significantly inhibited the transport of TC in the quartz sand column. Cu(II) augmented the retention of TC in the column mainly via electrostatic force and complexation. The interaction between TC and TC-Cu complexes on the surface of SiO2 was investigated with first-principles calculations for the first time. There were strong van der Waals forces and coordination bonds on the surface of complexes and SiO2, leading to higher adsorption energy than that of TC and inhibiting its penetration. This study offers novel insights and theoretical framework for the transport of antibiotics in the presence of metal ions to better understand the fate of antibiotics in nature.


Asunto(s)
Cobre , Tetraciclina , Contaminantes Químicos del Agua , Tetraciclina/química , Cobre/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Porosidad , Adsorción , Modelos Químicos , Dióxido de Silicio/química , Antibacterianos/química
12.
Front Pharmacol ; 15: 1422770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040469

RESUMEN

Background: The beneficial effects of fibroblast growth factor 21 (FGF21) and sodium butyrate (NaB) on protection against cholestasis-induced liver fibrosis are not well known. This study aimed to explore the effects of FGF21 and NaB on bile duct ligation (BDL)-induced liver fibrosis. Methods: Wild-type (WT) and FGF21 knockout (KO) mice received BDL surgery for 14 days. Liver fibrosis was assessed by Masson's staining for fibrosis marker expressions at the mRNA or protein levels. Adenovirus-mediated FGF21 overexpression in the WT mice was assessed against BDL damage. BDL surgeries were performed in WT and FGF21 KO mice that were administered either phosphate-buffered saline or NaB. The effects of NaB on the energy metabolism and gut microbiota were assessed using stable metabolism detection and 16S rRNA gene sequencing. Results: BDL-induced liver fibrosis in the WT mice was accompanied by high induction of FGF21. Compared to the WT mice, the FGF21 KO mice showed more severe liver fibrosis induced by BDL. FGF21 overexpression protected against BDL-induced liver fibrosis, as proved by the decreasing α-SMA at both the mRNA and protein levels. NaB administration enhanced the glucose and energy metabolisms as well as remodeled the gut microbiota. NaB alleviated BDL-induced liver fibrosis in the WT mice but aggravated the same in FGF21 KO mice. Conclusion: FGF21 plays a key role in alleviating cholestasis-induced liver damage and fibrosis. NaB has beneficial effects on cholestasis in an FGF21-dependent manner. NaB administration can thus be a novel nutritional therapy for treating cholestasis via boosting FGF21 signaling and regulating the gut microbiota.

13.
Innovation (Camb) ; 5(4): 100654, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39021527

RESUMEN

X-ray detection is crucial across various sectors, but traditional techniques face challenges such as inefficient data transmission, redundant sensing, high power consumption, and complexity. The innovative idea of a retinomorphic X-ray detector shows great potential. However, its implementation has been hindered by the absence of active layers capable of both detecting X-rays and serving as memory storage. In response to this critical gap, our study integrates hybrid perovskite with hydrion-conductive organic cations to develop a groundbreaking retinomorphic X-ray detector. This novel device stands at the nexus of technological innovation, utilizing X-ray detection, memory, and preprocessing capabilities within a single hardware platform. The core mechanism underlying this innovation lies in the transport of electrons and holes within the metal halide octahedral frameworks, enabling precise X-ray detection. Concurrently, the hydrion movement through organic cations endows the device with short-term resistive memory, facilitating rapid data processing and retrieval. Notably, our retinomorphic X-ray detector boasts an array of formidable features, including reconfigurable short-term memory, a linear response curve, and an extended retention time. In practical terms, this translates into the efficient capture of motion projections with minimal redundant data, achieving a compression ratio of 18.06% and an impressive recognition accuracy of up to 98.6%. In essence, our prototype represents a paradigm shift in X-ray detection technology. With its transformative capabilities, this retinomorphic hardware is poised to revolutionize the existing X-ray detection landscape.

14.
Adv Sci (Weinh) ; 11(32): e2310131, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922788

RESUMEN

N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.


Asunto(s)
Proliferación Celular , Proteína HMGA1a , Acetiltransferasa E N-Terminal , Neoplasias de la Próstata , ARN Mensajero , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Ratones , Animales , Acetilación , Transición Epitelial-Mesenquimal/genética , Metástasis de la Neoplasia/genética , Regulación Neoplásica de la Expresión Génica/genética , Modelos Animales de Enfermedad , Movimiento Celular/genética , Acetiltransferasas N-Terminal
15.
Cell Death Dis ; 15(6): 409, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862475

RESUMEN

Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.


Asunto(s)
Supervivencia Celular , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Glucosa/metabolismo , Línea Celular Tumoral , Autofagia , Ubiquitinación , Transducción de Señal , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HEK293 , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
16.
Sci Total Environ ; 943: 173709, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852864

RESUMEN

Antibiotics and polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants in the aquatic region encompassing the estuary of the Yellow River and Laizhou Bay. But little information is available about the trophic transfer of antibiotics and PAHs in the marine food web of this area. This study investigated the occurrence and trophic transfer of 19 antibiotics and 16 PAHs in marine organisms from a food web of Laizhou Bay of the Yellow River estuary. Sulfonamides, fluoroquinolones, and 2 to 4-ring PAHs were the dominant contaminants in organisms. There was a significant positive correlation between the log total concentration of sulfonamides and trophic level (TL). Sulfadiazine, sulfamethazine, and erythromycin had biomagnification effects, while ciprofloxacin and ofloxacin had biological dilution effects. The log total concentration of PAHs had a significant negative correlation with TL. Naphthalene, fluorene, anthracene, pyrene, and benzo[g,h,i]perylene had biological dilution effects. The distinct correlations of trophic magnification factors Dow of antibiotics and Kow of 2 to 5-ring PAHs, indicating that the potential of these two coefficients for predicting their transfer. Risk assessment indicated that the consumption of seafood containing antibiotics and PAHs in Laizhou Bay of the Yellow River estuary posed health and carcinogenic risks to human, respectively.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Estuarios , Cadena Alimentaria , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , China , Medición de Riesgo , Humanos , Ríos/química , Organismos Acuáticos , Animales
17.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791369

RESUMEN

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Asunto(s)
Toxinas Bacterianas , Interleucina-8 , Infecciones por Pasteurella , Pasteurella multocida , Animales , Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Caspasa 8/metabolismo , Caspasa 8/genética , Línea Celular , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Porcinos , Infecciones por Pasteurella/metabolismo , Infecciones por Pasteurella/veterinaria
18.
J Youth Adolesc ; 53(9): 2002-2015, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730128

RESUMEN

Although family and school experiences play an important role in adolescents' adjustment during the transition to high school, most prior studies investigated the effects of these experiences in isolation; their joint implications for both adolescents' concurrent and long-term adjustment outcomes are less clear, and the potential role of individual characteristics within such associations remains understudied. Based on 525 10th graders (Mage = 15.48, SDage = 0.71, 43.6% boys) who participated in a longitudinal study, the present research aimed to identify distinct family and school experience profiles among first-year high school students and examine their associations with adolescents' internalizing problems and externalizing problems, both concurrently and 18 months later. Latent profile analysis revealed four distinctive profiles: thriving, low resources-moderate family risk, developmental stress-high parental conflicts, and developmental stress-high peer victimization profiles. The other three profiles (vs. the thriving profile) reported significantly higher levels of concurrent internalizing problems; while these differences diminished after 18 months. However, the enduring impacts of these profiles on internalizing problems persisted among adolescents with higher levels of environmental sensitivity. Additionally, adolescents characterized by two developmental stress profiles (vs. the thriving profile) exhibited significantly higher levels of externalizing problems both currently and longitudinally. Findings underscore the importance of identifying at-risk populations among adolescents during the transition to high school by including both family and school experiences when examining environmental influence on their adjustment, as well as the necessity to take individual environmental sensitivity into account when examining these associations.


Asunto(s)
Conducta del Adolescente , Instituciones Académicas , Estudiantes , Humanos , Adolescente , Masculino , Femenino , Estudios Longitudinales , Estudiantes/psicología , Estudiantes/estadística & datos numéricos , Conducta del Adolescente/psicología , Adaptación Psicológica , Ajuste Social , Estrés Psicológico/psicología , Grupo Paritario , Acoso Escolar/psicología , Acoso Escolar/estadística & datos numéricos , Familia/psicología
19.
Immunol Cell Biol ; 102(7): 557-569, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714318

RESUMEN

The development of in vitro models is essential for a comprehensive understanding and investigation of pulmonary fibrosis (PF) at both cellular and molecular levels. This study presents a literature review and an analysis of various cellular models used in scientific studies, specifically focusing on their applications in elucidating the pathogenesis of PF. Our study highlights the importance of taking a comprehensive approach to studing PF, emphasizing the necessity of considering multiple cell types and organs and integrating diverse analytical perspectives. Notably, primary cells demonstrate remarkable cell growth characteristics and gene expression profiles; however, their limited availability, maintenance challenges, inability for continuous propagation and susceptibility to phenotypic changes over time significantly limit their utility in scientific investigation. By contrast, immortalized cell lines are easily accessible, cultured and continuously propagated, although they may have some phenotypic differences from primary cells. Furthermore, in vitro coculture models offer a more practical and precise method to explore complex interactions among cells, tissues and organs. Consequently, when developing models of PF, researchers should thoroughly assess the advantages, limitations and relevant mechanisms of different cell models to ensure their selection is consistent with the research objectives.


Asunto(s)
Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/patología , Animales , Modelos Biológicos , Técnicas de Cocultivo
20.
Langmuir ; 40(22): 11635-11641, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775800

RESUMEN

The presence of abnormal dopamine (DA) levels may cause serious neurological disorders, therefore, the quantitative analysis of DA and its related research are of great significance for ensuring health. Herein, the bovine serum albumin (BSA) template method has been proposed for the preparation of catalytically high-performance ruthenium dioxide/multiwalled carbon nanotube (RuO2/MWCNT) nanocomposites. The incorporation of MWCNTs has improved the active surface area and conductivity while effectively preventing the aggregation of RuO2 nanoparticles. The outstanding electrocatalytic performance of RuO2/MWCNTs has promoted the electro-oxidation of DA at neutral pH. The electrochemical sensing platform based on RuO2/MWCNTs has demonstrated a wide linear range (0.5 to 111.1 µM), low detection limit (0.167 µM), excellent selectivity, long-term stability, and good reproducibility for DA detection. The satisfactory recovery range of 94.7% to 103% exhibited by the proposed sensing podium in serum samples signifies its potential for analytical applications. The aforementioned results reveal that RuO2/MWCNT nanostructures hold promising aptitude in the electrochemical sensor to detect DA in real samples, further offering broad prospects in clinical and medical diagnosis.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Nanotubos de Carbono , Compuestos de Rutenio , Albúmina Sérica Bovina , Animales , Bovinos , Humanos , Técnicas Biosensibles/métodos , Dopamina/sangre , Técnicas Electroquímicas/métodos , Límite de Detección , Nanotubos de Carbono/química , Compuestos de Rutenio/química , Albúmina Sérica Bovina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA