Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39297395

RESUMEN

Multifunctional materials integrated with electromagnetic wave absorption (EWA), thermal insulation, and lightweight properties are urgently indispensable for the flourishing advancement of space technology, which can simultaneously prevent electromagnetic detection and resist aerodynamic heating. To achieve excellent synergistic EWA and thermal insulation performance, the elaborate regulate the microstructure and dimension of nanomaterials has emerged as a captivating research direction. However, comprehending the structure-property relationships between microstructure, electromagnetic response, and thermal insulation mechanisms remains a significant challenge. Herein, a comprehensive perspective focuses on the microstructure design encompassing various dimensions of nanomaterials, providing a comprehensive understanding of correlations among structure, EWA, and thermal insulation. First, the cutting-edge mechanisms of EWA and thermal insulation are elaborated, followed by the relationship between the dimensions of nanomaterials. Moreover, the synergistic design methods of EWA and thermal insulation are explored. Lastly, this review summarizes the corresponding shortcomings and issues of current EWA-integrated thermal insulation materials and proposes breakthrough directions for the creation of materials with superior performance.

2.
RSC Adv ; 14(38): 27514-27519, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39221131

RESUMEN

MgGa2O4 (MGO) with the spinel structure exhibits abundance defects and could achieve the modulation of emission by ion doping as persistent luminescence nanoparticles (PLNPs). Here, we introduced Cr3+ ions into MGO to achieve near-infrared (NIR) emission, and Pr3+ ions to tune the lattice environment for enhanced NIR emission. The optimal composite, MgGa2O4: 0.005Cr3+, 0.003Pr3+ (MGCP), achieved enhanced NIR emission at 709 nm under 222 nm excitation. The concentration quenching was observed due to electric dipole-quadrupole interaction at high Cr3+ and Pr3+ content. The afterglow mechanism was revealed, while the energy-splitting occurs from trivalent Cr3+ ions at 650 and 709 nm, thanks to the complex lattice environment. We observed that the emission at 709 nm decreased, while the satellite signal at 650 nm increased first and then decreased intensity with increasing temperature, due to the intervalence charge transfer for Cr3+ ions at 303-528 K. Ratiometric temperature sensing was therefore realized with superb linearity, high absolute sensitivity at 303 K for 4.18%, and accuracy at 528 K for 2.62 K, confirming with the luminescence intensity ratio at 709 and 650 nm under excitation at 222 nm. Thus, we provide a method with energy-splitting emission of Cr3+ ions to design temperature sensing.

3.
J Ethnopharmacol ; : 118808, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cognitive impairment caused by central neuropathy in type 2 diabetes mellitus (T2DM), namely diabetes-associated cognitive decline (DACD), is one of the common complications in patients with T2DM. Studies have shown that brain ß-amyloid (Aß) deposition is a typical pathological change in patients with DACD, and that there is a close relationship between intestinal microorganisms and cognitive impairment. However, the specific mechanism(s) of alteration in Aß metabolism in DACD, and of the correlation between Aß metabolism and intestinal microorganisms remain unknown. AIM OF THE STUDY: Revealing the mechanism of ZBPYR regulating Aß metabolism and providing theoretical basis for clinical evaluation and diagnosis of DACD. MATERIALS AND METHODS: We characterized Aß metabolism in the central and peripheral tissues of Zucker diabetic fatty (ZDF) rats with DACD, and then explored the preventive and therapeutic effects of ZiBu PiYin Recipe (ZBPYR). Specifically, we assessed these animals for the formation, transport, and clearance of Aß; the morphological structure of the blood-brain barrier (BBB); and the potential correlation between Aß metabolism and intestinal microorganisms. RESULTS: ZBPYR provided improvements in the structure of the BBB, attenuation of Aß deposition in the central and peripheral tissues, and a delay in the development of DACD by improving the expression of Aß production, transport, and clearance related protein in ZDF rats. In addition, ZBPYR improved the diversity and composition of intestinal microorganisms, decreased the abundance of Coprococcus, a bacterium closely related to Aß production, and up regulate the abundance of Streptococcus, a bacterium closely related to Aß clearance. CONCLUSION: The mechanism of ZBPYR ability to ameliorate DACD may be closely related to changes in the intestinal microbiome.

4.
J Neurosci Methods ; 412: 110277, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245330

RESUMEN

BACKGROUND: Speech sounds are processed in the human brain through intricate and interconnected cortical and subcortical structures. Two neural signatures, one largely from cortical sources (mismatch response, MMR) and one largely from subcortical sources (frequency-following response, FFR) are critical for assessing speech processing as they both show sensitivity to high-level linguistic information. However, there are distinct prerequisites for recording MMR and FFR, making them difficult to acquire simultaneously NEW METHOD: Using a new paradigm, our study aims to concurrently capture both signals and test them against the following criteria: (1) replicating the effect that the MMR to a native speech contrast significantly differs from the MMR to a nonnative speech contrast, and (2) demonstrating that FFRs to three speech sounds can be reliably differentiated. RESULTS: Using EEG from 18 adults, we observed a decoding accuracy of 72.2 % between the MMR to native vs. nonnative speech contrasts. A significantly larger native MMR was shown in the expected time window. Similarly, a significant decoding accuracy of 79.6 % was found for FFR. A high stimulus-to-response cross-correlation with a 9 ms lag suggested that FFR closely tracks speech sounds. COMPARISON WITH EXISTING METHOD(S): These findings demonstrate that our paradigm reliably captures both MMR and FFR concurrently, replicating and extending past research with much fewer trials (MMR: 50 trials; FFR: 200 trials) and shorter experiment time (12 minutes). CONCLUSIONS: This study paves the way to understanding cortical-subcortical interactions for speech and language processing, with the ultimate goal of developing an assessment tool specific to early development.

5.
Nature ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231480

RESUMEN

Hyperlipidaemia is a major risk factor of atherosclerotic cardiovascular disease (ASCVD). Risk of cardiovascular events depends on cumulative lifetime exposure to low-density lipoprotein cholesterol (LDL-C) and, independently, on the time course of exposure to LDL-C, with early exposure being associated with a higher risk1. Furthermore, LDL-C fluctuations are associated with ASCVD outcomes2-4. However, the precise mechanisms behind this increased ASCVD risk are not understood. Here, we make the unexpected observation that early intermittent feeding of mice with a high-cholesterol Western-type diet (WD) accelerates atherosclerosis compared with late continuous exposure to WD, despite similar cumulative circulating LDL-C levels. We find that early intermittent hyperlipidaemia alters the number and homeostatic phenotype of resident-like arterial macrophages. Macrophage genes with altered expression are enriched for genes linked to human ASCVD in genome-wide association studies. We show that LYVE1+ resident macrophages are atheroprotective, and identify new biological pathways, related to actin filament organisation, whose alteration accelerates atherosclerosis. Using the Young Finns Study, we show that exposure to cholesterol early in life is significantly associated with the incidence and size of carotid atherosclerotic plaques in mid-adulthood. In summary, our results identify early intermittent exposure to cholesterol as a strong determinant of accelerated atherosclerosis, highlighting the importance of optimal control of hyperlipidaemia early in life, and providing insight into the underlying biological mechanisms. This knowledge will be essential to designing effective therapeutic strategies to combat atherosclerotic cardiovascular disease.

6.
J Proteome Res ; 23(9): 4082-4094, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39167481

RESUMEN

We aimed to uncover the pathological mechanism of ischemic stroke (IS) using a combined analysis of untargeted metabolomics and proteomics. The serum samples from a discovery set of 44 IS patients and 44 matched controls were analyzed using a specific detection method. The same method was then used to validate metabolites and proteins in the two validation sets: one with 30 IS patients and 30 matched controls, and the other with 50 IS patients and 50 matched controls. A total of 105 and 221 differentially expressed metabolites or proteins were identified, and the association between the two omics was determined in the discovery set. Enrichment analysis of the top 25 metabolites and 25 proteins in the two-way orthogonal partial least-squares with discriminant analysis, which was employed to identify highly correlated biomarkers, highlighted 15 pathways relevant to the pathological process. One metabolite and seven proteins exhibited differences between groups in the validation set. The binary logistic regression model, which included metabolite 2-hydroxyhippuric acid and proteins APOM_O95445, MASP2_O00187, and PRTN3_D6CHE9, achieved an area under the curve of 0.985 (95% CI: 0.966-1) in the discovery set. This study elucidated alterations and potential coregulatory influences of metabolites and proteins in the blood of IS patients.


Asunto(s)
Biomarcadores , Accidente Cerebrovascular Isquémico , Metabolómica , Proteómica , Humanos , Biomarcadores/sangre , Metabolómica/métodos , Proteómica/métodos , Accidente Cerebrovascular Isquémico/sangre , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios de Casos y Controles
7.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39092948

RESUMEN

The multiphoton excitation pathways of plasmonic nanorod assemblies are described. By using dolmen structures formed from the directed assembly of three gold nanorods, plasmon-mediated three-photon excitation is resolved. These high-order multiphoton excitation channels were accessed by resonantly exciting a hybrid mode of the dolmen structure that was resonant with the 800-nm carrier wavelength of an ultrafast laser system. Rotation of the exciting field polarization to a non-resonant configuration did not generate third-order responses. Hence, the multiphoton excitation and resultant non-equilibrium electron distributions were generated by structure- and mode-selective excitation. Correlation between high-order and resonant plasmon excitation was achieved through sub-cycle time-resolved interferometric detection of incoherent nonlinear emission signals. The results illustrate the advantages of nonlinear optical interferometry and Fourier analysis for distinguishing plasmon-mediated processes from those that do not require plasmon excitation.

8.
Chin J Integr Med ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073516

RESUMEN

OBJECTIVE: To investigate changes of myeloid differentiation factor 2 (MD2) in inflammation-induced pain and acupuncture-mediated analgesia. METHODS: Mice were randomly divided into three groups by a random number table method: saline group (n=16), complete Freund's adjuvant (CFA) group (n=24) and CFA+electroacupuncture (EA) group (n=26). Inflammation-induced pain was modelled by injecting CFA to the plantar surface of the hind paw of mice and EA was applied to bilateral Zusanli (ST 36) to alleviate pain. Only mice in the CFA+EA group received EA treatment (30 min/d for 2 weeks) 24 h after modelling. Mice in the saline and CFA groups received sham EA. von-Frey test and Hargreaves test were used to assess the pain threshold. Brain and spinal tissues were collected for immunofluorescence staining or Western blotting to quantify changes of MD2 expression. RESULTS: CFA successfully induced plantar pain and EA significantly alleviated pain 3 days after modelling (P<0.01). Compared with the CFA group, the number of MD2+/c-fos+ neurons was significantly increased in the dorsal horn of the spinal cord 7 and 14 days after EA, especially in laminae I - IIo (P<0.01). The proportion of double positive cells to the number of c-fos positive cells and the mean fluorescence intensity of MD2 neurons were also significantly increased in laminae I - IIo (P<0.01). Western blotting showed that the level of MD2 was significantly decreased by EA only in the hippocampus on day 7 and 14 (both P<0.01) and no significant changes were observed in the cortex, thalamus, cerebellum, or the brainstem (P<0.05). Fluorescence staining showed significant decrease in the level of MD2 in periagueductal gray (PAG) and locus coeruleus (LC) after CFA injection on day 7 (P<0.01 for PAG, P<0.05 for LC) and EA significantly reversed this decrease (P<0.01 for PAG, P<0.05 for LC). CONCLUSION: The unique changes of MD2 suggest that EA may exert the analgesic effect through modulating neuronal activities of the superficial laminae of the spinal cord and certain regions of the brain.

9.
Cardiovasc Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073768

RESUMEN

AIMS: While acute cardiovascular complications of COVID-19 are well-described, less is known about longer-term cardiac sequelae. For many individuals with cardiac signs or symptoms arising after COVID-19 infection, the aetiology remains unclear. We examined immune profiles associated with magnetic resonance imaging (MRI) abnormalities in patients with unexplained cardiac injury after COVID-19. METHODS AND RESULTS: Twenty-one participants (mean age 47 [SD 13] years, 71% female) with long COVID (n=17), raised troponin (n=2), or unexplained new-onset heart failure (n=2), who did not have pre-existing heart conditions or recent steroid/immunosuppression treatment were enrolled a mean 346 (SD 191) days after COVID-19 infection in a prospective observational study. Cardiac MRI and blood sampling for deep immunophenotyping using mass cytometry by time of flight and measurement of proteomic inflammatory markers was performed. Nine of 21 (43%) participants had MRI abnormalities (MRI(+)), including non-ischaemic patterns of late gadolinium enhancement and/or visually overt myocardial oedema in 8 people. One patient had mildly impaired biventricular function without fibrosis or oedema, and 2 had severe left ventricular impairment. MRI(+) individuals had higher blood CCL3, CCL7, FGF-23 and CD4 Th2 cells, and lower CD8 T effector memory (TEM) cells, than MRI(-). Cluster analysis revealed lower expression of inhibitory receptors PD1 and TIM3 in CD8 TEM cells from MRI(+) patients than MRI(-) patients, and functional studies of CD8 T αß cells showed higher proportions of cytotoxic granzyme B+ secreting cells upon stimulation. CD8 TEM cells and CCL7 were the strongest predictors of MRI abnormalities in a LASSO regression model (composite AUC 0.96, 95%CI 0.88-1.0). CCL7 was correlated with diffuse myocardial fibrosis/oedema detected by quantitative T1 mapping (r=0.47, p=0.04). CONCLUSION: COVID-19 related cardiac injury in symptomatic patients with non-ischaemic myocarditis-like MRI abnormalities is associated with immune dysregulation, including decreased peripheral CD8 TEM cells and increased CCL7, persisting long after the initial infection.

10.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999935

RESUMEN

Lithium-ion batteries, as an excellent energy storage solution, require continuous innovation in component design to enhance safety and performance. In this review, we delve into the field of eco-friendly lithium-ion battery separators, focusing on the potential of cellulose-based materials as sustainable alternatives to traditional polyolefin separators. Our analysis shows that cellulose materials, with their inherent degradability and renewability, can provide exceptional thermal stability, electrolyte absorption capability, and economic feasibility. We systematically classify and analyze the latest advancements in cellulose-based battery separators, highlighting the critical role of their superior hydrophilicity and mechanical strength in improving ion transport efficiency and reducing internal short circuits. The novelty of this review lies in the comprehensive evaluation of synthesis methods and cost-effectiveness of cellulose-based separators, addressing significant knowledge gaps in the existing literature. We explore production processes and their scalability in detail, and propose innovative modification strategies such as chemical functionalization and nanocomposite integration to significantly enhance separator performance metrics. Our forward-looking discussion predicts the development trajectory of cellulose-based separators, identifying key areas for future research to overcome current challenges and accelerate the commercialization of these green technologies. Looking ahead, cellulose-based separators not only have the potential to meet but also to exceed the benchmarks set by traditional materials, providing compelling solutions for the next generation of lithium-ion batteries.


Asunto(s)
Celulosa , Suministros de Energía Eléctrica , Litio , Celulosa/química , Litio/química , Tecnología Química Verde/métodos
11.
Sci Rep ; 14(1): 15475, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969689

RESUMEN

The Yangtze River (hereafter referred to as the YZR), the largest river in China, is of paramount importance for ensuring water resource security. The Yangtze River Basin (hereafter referred to as the YRB) is one of the most densely populated areas in China, and complex human activities have a significant impact on the ecological security of water resources. Therefore, this paper employs theories related to ecological population evolution and the Driving Force-Pressure-State-Impact-Response (DPSIR) model to construct an indicator system for the ecological security of water resources in the YRB. The report evaluates the ecological security status of water resources in each province of the YRB from 2010 to 2019, clarifies the development trend of its water resource ecological security, and proposes corresponding strategies for regional ecological security and coordinated economic development. According to the results of the ecological population evolution competition model, the overall indicator of the ecological security of water resources in the YRB continues to improve, with the safety level increasing annually. Maintaining sound management of water resources in the YRB is crucial for sustainable socioeconomic development. To further promote the ecological security of water resources in the YRB and the coordinated development of the regional economy, this paper proposes policy suggestions such as promoting the continuous advancement of sustainable development projects, actively adjusting industrial structure, continuously enhancing public environmental awareness, and actively participating in international ecological construction and seeking cooperation among multiple departments.

12.
Behav Brain Res ; 472: 115152, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39032868

RESUMEN

The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.


Asunto(s)
Extinción Psicológica , Metanfetamina , Ratones Endogámicos C57BL , Corteza Prefrontal , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Metanfetamina/farmacología , Femenino , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Ratones , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Condroitina ABC Liasa/farmacología
13.
Int J Biol Macromol ; 277(Pt 1): 134121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053821

RESUMEN

To investigate the mechanism of lignin degradation during sesame roasting, structural transformations of milled wood lignin (MWL) from sesame seed hull samples roasted at 190-250 °C for 30 min were investigated. The findings revealed that, with increasing temperature, the degradation extent of carbohydrates from lignin carbohydrate complex in the fractions deepened, which reduced total sugar content (from 8.59 % to 0.45 %). Compared to that of the original sesame seed hull lignin (LSSH), the molecular weight of MWL fractions showed a tendency to decline (Mw 4377-2235 Da) with the rise of roasting temperature (210-250 °C). During roasting, lignins in the sesame seed hull underwent degradation and condensation. Due to demethoxylation, the H-type lignin proportion increased from 2.7 % to 26.1 %. Compared to G- and C-type lignin, S-type lignin was more stable. The ß-O-4 linkages decreased from 5.8 to 1.2/100 Ar due to CO bond breaking, and ß-ß linkages from 26.3 to 9.6/100 Ar decreased due to condensation of CC. As the roasting temperature increased, more chemical bonds between lignin structural units were broken, resulting in the generation of more phenolic hydroxyl groups (1.80-2.53 mmol/g). This study helps to elucidate the contribution of lignin degradation during roasting to the oxidative stability of sesame oil.


Asunto(s)
Calor , Lignina , Semillas , Sesamum , Lignina/química , Sesamum/química , Semillas/química , Peso Molecular
14.
Environ Res ; 260: 119553, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964573

RESUMEN

Evidence regarding the link between long-term ambient ozone (O3) exposure and childhood sleep disorders is little. This study aims to examine the associations between long-term exposure to O3 and sleep disorders in children. We conducted a population-based cross-sectional survey, including 185,428 children aged 6-18 years in 173 schools across 14 Chinese cities during 2012 and 2018. Parents or guardians completed a checklist using Sleep Disturbance Scale for Children, and O3 exposure at residential and school addresses was estimated using a satellite-based spatiotemporal model. We used generalized linear mixed models to test the associations with adjustment for factors including socio-demographic variables, lifestyle, meteorology and multiple pollutants. Mean concentrations of O3, particulate matter with diameters ≤2.5 mm (PM2.5) and nitrogen dioxide (NO2) were 89.0 µg/m3, 42.5 µg/m3 and 34.4 µg/m3, respectively. O3 and NO2 concentrations were similar among provinces, while PM2.5 concentration varied significantly among provinces. Overall, 19.4% of children had at least one sleep disorder. Long-term exposure to O3 was positively associated with odds of sleep disorders for all subtypes. For example, each interquartile increment in home-school O3 concentrations was associated with a higher odds ratio for global sleep disorder, at 1.22 (95% confidence interval: 1.18, 1.26). Similar associations were observed for sleep disorder subtypes. The associations remained similar after adjustment for PM2.5 and NO2. Moreover, these associations were heterogeneous regionally, with more prominent associations among children residing in southeast region than in northeast and northwest regions in China. We concluded that long-term exposure to O3 is positively associated with risks of childhood sleep disorders. These associations varied by geographical region of China.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Ozono , Trastornos del Sueño-Vigilia , Humanos , Ozono/análisis , Ozono/efectos adversos , Niño , China/epidemiología , Adolescente , Masculino , Femenino , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/inducido químicamente , Estudios Transversales , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
15.
Talanta ; 278: 126526, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996564

RESUMEN

Understanding charge transport in metal ion-mediated glutathione-stabilized gold nanoclusters (GSH-Au NCs) has proved difficult due to the presence of various competitive mechanisms, such as electron transfer (ET) and aggregation induction effect (AIE). In this paper, we present a dual-channel fluorescence (FL) and second-order Rayleigh scattering (SRS) sensing method for high-throughput classification of metal ions, relying on the competition between ET and AIE using GSH-Au NCs. The SRS signals show significant enhancement when Pb2+, Ag+, Al3+, Cu2+, Fe3+, and Hg2+ are present, as a result of the aggregation of GSH-Au NCs. Notably, the fluorescence signal exhibits the opposite trend. The FL intensities of GSH-Au NCs are enhanced by Pb2+, Ag+, and Al3+ through the AIE mechanism, while they are quenched by Cu2+, Fe3+, and Hg2+, which is dominated by the ET mechanism. By employing principal component analysis and hierarchical cluster analysis, these signals are transformed into unique fingerprints and Euclidean distances, respectively, enabling successful distinction of six metal ions and their mixtures with a low detection limit of 30 nM. This new strategy has successfully addressed interference from impurities in the testing of real water samples, demonstrating its strong ability to detect multiple metal ions. Impressively, we have achieved molecular cryptosteganography, which involves encoding, storing, and concealing information by transforming the selective response of GSH-Au NCs to binary strings. This research is anticipated to advance utilization of nanomaterials in logic sensing and information safety, bridging the gap between molecular sensors and information systems.

16.
Int Immunopharmacol ; 139: 112745, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39059099

RESUMEN

Acute kidney injury (AKI) manifests as a clinical syndrome characterised by the rapid accumulation of metabolic wastes, such as blood creatinine and urea nitrogen, leading to a sudden decline in renal function. Currently, there is a lack of specific therapeutic drugs for AKI. Previously, we identified gastrin-releasing peptide receptor (GRPR) as a pathogenic factor in AKI. In this study, we investigated the therapeutic potential of a novel Chinese medicine monomer, aurantiamide (AA), which exhibits structural similarities to our previously reported GRPR antagonist, RH-1402. We compared the therapeutic efficacy of AA with RH-1402 both in vitro and in vivo using various AKI models. Our results demonstrated that, in vitro, AA attenuated injury, necroptosis, and inflammatory responses in human renal tubular epithelial cells subjected to repeated hypoxia/reoxygenation and lipopolysaccharide stimulation. In vivo, AA ameliorated renal tubular injury and inflammation in mouse models of ischemia/reperfusion and cecum ligation puncture-induced AKI, surpassing the efficacy of RH-1402. Furthermore, molecular docking and cellular thermal shift assay confirmed GRPR as a direct target of AA, which was further validated in primary cells. Notably, in GRPR-silenced HK-2 cells and GRPR systemic knockout mice, AA failed to mitigate renal inflammation and injury, underscoring the importance of GRPR in AA's mechanism of action. In conclusion, our study has demonstrated that AA serve as a novel antagonist of GRPR and a promising clinical candidate for AKI treatment.


Asunto(s)
Lesión Renal Aguda , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis , Receptores de Bombesina , Animales , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Humanos , Necroptosis/efectos de los fármacos , Ratones , Masculino , Línea Celular , Receptores de Bombesina/metabolismo , Receptores de Bombesina/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
17.
J Proteome Res ; 23(8): 3674-3681, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39028944

RESUMEN

INTRODUCTION: It is crucial to investigate the distinct proteins that contribute to the advancement of lung cancer. MATERIAL AND METHODS: We analyzed the expression levels of 92 immuno-oncology-related proteins in 96 pairs of lung adenocarcinoma tissue samples using Olink proteomics. The differentially expressed proteins (DEPs) were successively screened in tumor and paraneoplastic groups, early and intermediate-late groups by a nonparametric rank sum test, and the distribution and expression levels of DEPs were determined by volcano and heat maps, etc., and the area under the curve was calculated. RESULTS: A total of 24 DEPs were identified in comparisons between tumor and paracancerous tissues. Among them, interleukin-8 (IL8) and chemokine (C-C motif) ligand 20 (CCL20) as potential markers for distinguishing tumor tissues. Through further screening, it was found that interleukin-6 (IL6) and vascular endothelial growth factor A (VEGFA) may be able to lead to tumor progression through the JaK-STAT signaling pathway, Toll-like receptor signaling pathway and PI3K/AKT signaling pathway. Interestingly, our study revealed a down-regulation of IL6 and VEGFA in tumor tissues compared to paracancerous tissues. CONCLUSIONS: IL8 + CCL20 (AUC: 0.7056) have the potential to differentiate tumor tissue from paracancerous tissue; IL6 + VEGFA (AUC: 0.7531) are important protein markers potentially responsible for tumor progression.


Asunto(s)
Adenocarcinoma del Pulmón , Biomarcadores de Tumor , Quimiocina CCL20 , Progresión de la Enfermedad , Interleucina-8 , Neoplasias Pulmonares , Proteómica , Factor A de Crecimiento Endotelial Vascular , Humanos , Proteómica/métodos , Biomarcadores de Tumor/metabolismo , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quimiocina CCL20/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Femenino , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica
18.
Artículo en Inglés | MEDLINE | ID: mdl-39044651

RESUMEN

BACKGROUND: Coronary microvascular dysfunction (CMD) after percutaneous coronary intervention (PCI) is prognostically important and may also be a cause of persistent angina. The stent balloon inflation technique or material properties may influence the degree of CMD post-PCI. METHODS: Thirty-six patients with stable angina attending for elective PCI were randomized to either slow drug eluting stent (DES) implantation technique (DES slow group): +2 atm. every 5 s., maintained for a further 30 s or a standard stent implantation technique (DES std group): rapid inflation and deflation. PressureWire X with thermodilution at rest and hyperemia and optical coherence tomography (OCT) were performed pre- and post-PCI. Combined primary endpoints were changes in index of microvascular resistance (delta IMR) and coronary flow reserve (delta CFR) following PCI. The secondary endpoints included differences in cardiac troponin I (delta cTnI) at 6 h post-PCI, Seattle angina questionnaire (SAQ) at 1, 3, 6, and 12 months and OCT measures of stent results immediately post-PCI and at 3 months. RESULTS: Both groups were well matched, with similar baseline characteristics and OCT-defined plaque characteristics. Delta IMR was significantly better in the DES slow PCI arm with a median difference of -4.14 (95% CI -10.49, -0.39, p = 0.04). Delta CFR was also numerically higher with a median difference of 0.47 (95% CI -0.52, 1.31, p = 0.46). This did not translate to improved delta median cTnI (1.5 (34.8) vs. 0 (27.5) ng/L, p = 0.75) or median SAQ score at 3 months, (85 (20) vs. 95 (17.5), p = 0.47). CONCLUSION: Slow stent implantation is associated with less CMD after elective PCI in patients with stable angina.

19.
Inorg Chem ; 63(28): 13110-13116, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940642

RESUMEN

Chemical equilibrium stands as a fundamental principle governing the dynamics of chemical systems. However, it may become intricate when it refers to nanomaterials because of their unique properties. Here, we invesitigated concave gold nanocubes (CGNs) subjected to an akaline Au3+/H2O2 solution, which exhibit both etching and growth in a monotonic solution. When CGNs were subjected to an increasingly alkaline Au3+/H2O2 solution, their dimensions increased from 107 to 199 nm and then decreased to 125 nm. Transmission electron microscopy (TEM) demonstrated that their morphology undergoes intricate alternations from concave to mutibranch and finally to concave again. Real-time ultraviolet-visible spectroscopy and time-dependent TEM also demonstrated reduction first and then oxidation in one solution. Among the nanomaterials, the obtained carpenterworm-like gold nanoparticles revealed the best catalytic performance in p-nitrophenol reduction by NaBH4, with a chemical rate that continues to increase until the reaction reaches completion. Growth leading to atomic dislocation, distortion, and exposure on nanoparticles and the redox of H2O2 plausibly account for the further etching due to the Ostwald ripening effect. Our study may spur more interest in the tuning of the properties, engineering, investigation, and design of new kinds of nanomaterials.

20.
Biomacromolecules ; 25(7): 4374-4383, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38825770

RESUMEN

Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.


Asunto(s)
Proteolisis , ARN Mensajero , Proteolisis/efectos de los fármacos , Humanos , ARN Mensajero/genética , Nanopartículas/química , Lípidos/química , Células HeLa , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Separación de Fases , Liposomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA