Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(5): 105, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622387

RESUMEN

KEY MESSAGE: Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.


Asunto(s)
Brassica , Sitios de Carácter Cuantitativo , Clorofila A , Fitomejoramiento , Hojas de la Planta/genética , Carotenoides , Brassica/genética , Estudios de Asociación Genética
2.
Front Mol Neurosci ; 16: 1216947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501726

RESUMEN

Introduction: Neuronal cell death is an important factor in the pathogenesis of acute high-altitude cerebral hypoxia; however, the underlying molecular mechanism remains unclear. In this study, we tested if high-altitude hypoxia (HAH) causes neuronal death and mitochondrial dysfunction using various in vivo and in vitro approaches. Methods: Acute high-altitude cerebral hypoxia was induced by hypobaric hypoxia chamber in male mice. we explored the mechanisms of neuronal cell death using immunofluorescence, western blotting, transmission electron microscopy, and flow cytometry. Next, mitochondrial function and morphology were observed using Jc-1 staining, seahorse assay, western blotting, MitoTracker staining, and transmission electron microscopy. Moreover, open field test, elevated plus test, and Morris water maze were applied for animal behavior. Results: Results revealed that HAH disrupted mitochondrial function and promoted neuronal apoptosis and necroptosis both in HT-22 cells and in mouse hippocampal neurons. Moreover, the mitochondrial membrane potential and adenosine triphosphate production decreased in neurons after HAH, while oxidative stress and mitochondrial fission increased. Behavioral studies suggested that HAH induced anxiety-like behavior and impaired spatial memory, while it had no effect on athletic ability. Discussion: These findings demonstrated that HAH promotes mitochondrial dysfunction and apoptosis of mouse neurons, thus providing new insights into the role of mitochondrial function and neuronal cell death in acute high-altitude cerebral hypoxia.

3.
Front Pharmacol ; 12: 621194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995020

RESUMEN

Objective: Velvet antler (VA; cornu cervi pantotrichum), a well-known traditional Chinese medicine, has been shown to exert cardioprotective effects. The purpose of this study was to investigate the effect of VA on heart failure (HF) caused by ischemia-reperfusion, and explore its possible mechanism from the regulation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 alpha (SERCA2a). Methods: A rat model of HF was established by ligating the left anterior descending coronary artery of male Sprague-Dawley rats (n = 88). One week after surgery, VA (200, 400, or 800 mg/[kg day-1]) or enalapril (1 mg/[kg day-1]) was administered daily for the next 4 weeks. Heart function was detected by echocardiography and histopathological analysis. The serum BNP level was measured by ELISA, and the expression of SERCA2a, PLB, PLB-Ser16, and PKA was determined by western blotting. SERCA2a and PLB mRNA levels were determined by real-time quantitative PCR. Results: Compared with the sham group, cardiac function in the HF group, including the serum BNP level, heart mass index, myocardial collagen deposition, and left ventricular ejection fraction, was markedly reduced; however, these changes could be reversed by VA treatment. In addition, VA (200 mg/[kg·d-1]) inhibited the decrease of SERCA2a and PLB mRNA levels and SERCA2a, PLB, PLB-Ser16, and PKA protein expression and restored the activity of SERCA2a and PKA. Enalapril affected only PLB protein expression. Conclusion: VA can improve myocardial fibrosis and ventricular remodeling in rats, thereby helping to restore cardiac function. The underlying mechanism may be related to the upregulation of the expression and activation of PKA and PLB and the restoration of the expression and activity of SERCA2a.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA