Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
J Virol ; : e0130924, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254314

RESUMEN

Variant Porcine epidemic diarrhea virus (PEDV), which causes diarrhea and high mortality in piglets, has become a major pathogen, and co-epidemics of different subtypes of the virus have become a very thorny problem for the clinical prevention and control of PEDV. However, cross-protection between epidemic G2a and G2b subtype strains has not been observed, and there is currently no vaccine against both G2a and G2b strains. In this study, we demonstrate the low cross-protection between G2a and G2b strains with piglet immunization and challenge tests. The trimeric full-length S proteins of G2a and G2b variants were purified and a bivalent subunit vaccine against PEDV G2a/G2b-S was developed. In active and passive immune protection tests, the bivalent subunit vaccine produced high neutralizing antibody titers and S-specific immunoglobulin G (IgG) and IgA titers against both the G2a and G2b strains in piglets and sows. In the attack phase of the viruses, the clinical symptoms and microscopic lesions in the immunized groups were significantly alleviated. Importantly, the PEDV G2a/G2b-S bivalent subunit vaccine conferred effective passive immunity against PEDV G2a and G2b challenges in the form of colostrum-derived antibodies from the immunized sows. In conclusion, our data demonstrate the low cross-protection of PEDV epidemic G2a and G2b strains and show that the G2a/G2b-S bivalent subunit vaccine is protective against both G2a and G2b strains. It is therefore a candidate vaccine for PEDV prevention. IMPORTANCE: The detection rate of PEDV G2a subtype strains is currently increasing. Although commercial vaccines are available, most vaccines do not exert an ideal protective effect against these strains. Furthermore, there is no definitive research into the cross-protection between G2a and G2b strains, and no bivalent vaccine provides joint protection against both. Therefore, in this study, we investigated the cross-protection between PEDV G2a and G2b strains and designed a candidate bivalent subunit vaccine combining the trimeric S proteins of the G2a and G2b subtypes. We demonstrate that the cross-protection between strains G2a and G2b is poor and that this bivalent subunit vaccine protects piglets from viral attack by inducing both active and passive immunity. This study emphasizes the effectiveness of the PEDV G2a/G2b-S bivalent subunit vaccine and provides a feasible method for the development of efficient PEDV vaccines.

2.
J Med Virol ; 96(9): e29931, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39291826

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS) usually have different infection routes, and coinfection is relatively rare. This study examines the clinical and etiological characteristics of coinfection by these two pathogens to provide important references for clinical diagnosis and treatment. Blood samples from 22 clinically diagnosed patients with HFRS were collected for molecular detection of HFRS and common tick and mouse borne diseases. Inoculate the blood of six severe and critically patients into cells to isolate and proliferate potential viruses, and retest the cell culture to determine the pathogen. In addition, complete data were collected from these 22 HFRS and concurrent SFTS patients, and white blood cells (WBCs), platelet (PLT), blood urea nitrogen (BUN), creatinine (Cr) and other data were compared and analyzed. A total of 31 febrile patients, including 22 HFRS patients and 9 SFTS patients, were collected from September 2021 to October 2022. Among these HFRS patients, 11 were severe or critical. Severe and critical HFRS patients were characterized by rodent exposure history, pharyngeal and conjunctival hyperemia, abnormal WBC and PLT counts, and elevated BUN and Cr values. Virus isolation and molecular detection on blood samples from 6 patients showed that three of the six severe patients were positive for hantaan virus (HTNV), and two of the three HTNV positives were also positive for SFTS bunyavirus (SFTSV). The two coinfected patients exhibited different clinical and laboratory characteristics compared to those infected by either virus alone. Coinfection of HTNV and SFTSV leads to severe and complex hemorrhagic fever. Laboratory characteristics, such as the indicators of WBC, PLT, BUN, and Cr, may differ between HFRS and SFTS. These findings have implications and provide references for the diagnosis and treatment of coinfected cases.


Asunto(s)
Coinfección , Virus Hantaan , Fiebre Hemorrágica con Síndrome Renal , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Coinfección/virología , Virus Hantaan/aislamiento & purificación , Virus Hantaan/genética , Virus Hantaan/patogenicidad , Masculino , Femenino , Persona de Mediana Edad , Síndrome de Trombocitopenia Febril Grave/virología , Síndrome de Trombocitopenia Febril Grave/sangre , Adulto , Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Fiebre Hemorrágica con Síndrome Renal/virología , Fiebre Hemorrágica con Síndrome Renal/sangre , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/complicaciones , Anciano , Animales , Adulto Joven
3.
Nat Commun ; 15(1): 7006, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143061

RESUMEN

The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.


Asunto(s)
Hidroclorotiazida , Inhibidores de los Simportadores del Cloruro de Sodio , Miembro 3 de la Familia de Transportadores de Soluto 12 , Fosforilación , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/química , Humanos , Hidroclorotiazida/farmacología , Hidroclorotiazida/química , Inhibidores de los Simportadores del Cloruro de Sodio/farmacología , Animales , Clortalidona/metabolismo , Clortalidona/química , Clortalidona/farmacología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Diuréticos/farmacología , Diuréticos/química , Diuréticos/metabolismo , Tiazidas/farmacología , Tiazidas/química , Tiazidas/metabolismo , Células HEK293 , Modelos Moleculares , Proteínas Serina-Treonina Quinasas
4.
Emerg Microbes Infect ; 13(1): 2396893, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39178299

RESUMEN

The Hulunbuir region, known for its diverse terrain and rich wildlife, is a hotspot for various natural epidemic diseases. Between 2021 and 2023, we collected 885 wild rodent samples from this area, representing three families, seven genera, and eleven species. Metagenomic analysis identified three complete nucleic acid sequences from the S, M, and L segments of the Hantaviridae family, which were closely related to the Khabarovsk virus. The nucleotide coding sequences for S, M, and L (1392 nt, 3465 nt, and 6491 nt, respectively) exhibited similarities of 82.34%, 81.68%, and 81.94% to known sequences, respectively, while protein-level analysis indicated higher similarities of 94.92%, 94.41%, and 95.87%, respectively. Phylogenetic analysis placed these sequences within the same clade as the Khabarovsk, Puumala, Muju, Hokkaido, Topografov, and Tatenalense viruses, all of which are known to cause febrile diseases in humans. Immunofluorescence detection of nucleic acid-positive rodent kidney samples using sera from patients with hemorrhagic fever and renal syndrome confirmed the presence of viral particles. Based on these findings, we propose that this virus represents a new member of the Hantaviridae family, tentatively named the Amugulang virus, after its primary distribution area.


Asunto(s)
Orthohantavirus , Filogenia , Roedores , Animales , China , Orthohantavirus/genética , Orthohantavirus/clasificación , Orthohantavirus/aislamiento & purificación , Roedores/virología , Humanos , Infecciones por Hantavirus/virología , Infecciones por Hantavirus/veterinaria , Infecciones por Hantavirus/epidemiología , Genoma Viral , Metagenómica , Fiebre Hemorrágica con Síndrome Renal/virología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Fiebre Hemorrágica con Síndrome Renal/epidemiología
5.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928262

RESUMEN

Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.


Asunto(s)
Microesferas , Neoplasias , Polímeros , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Polímeros/química , Portadores de Fármacos/química , Animales , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos
7.
Cell Signal ; 120: 111221, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729321

RESUMEN

BACKGROUND: Targeting ferroptosis is a potential strategy for cancer treatment. Activated cancer-associated fibroblasts (CAFs) can affect the progression of lung cancer through exosomes. This study investigated the mechanism by which exosomal lncRNA ROR1-AS1 derived from CAFs affects ferroptosis of lung cancer cells. METHODS: CAFs were identified by western blot and immunofluorescence. Exosomes derived from CAFs (CAF-exo) were analyzed by transmission electron microscope, nanoparticle tracking analysis and western blot. The expression levels of ROR1-AS1, IGF2BP1 and SLC7A11 in lung cancer were analyzed by bioinformatics analysis and detected by qPCR and western blot. The lung cancer cells were treated with Erastin and/or CAF-exo, then cell viability was detected by cell counting kit-8, and the ferroptosis-related indicators were detected by corresponding kits. The relationship between IGF2BP1 and ROR1-AS1 or SLC7A11 was determined by RNA pull down and RNA immunoprecipitation, and their effects on cell ferroptosis were confirmed by rescue experiments. Xenotransplantation experiment was used to determine the effect of CAF-exo on tumor growth and ferroptosis in vivo. Immunohistochemistry was used to identify the Ki-67 and 4-HNE expression. RESULTS: ROR1-AS1, IGF2BP1 and SLC7A11 were upregulated in lung cancer and indicated poor prognosis. LncRNA ROR1-AS1 increased the stability of SLC7A11 mRNA by interacting with IGF2BP1. Exosomal ROR1-AS1 from CAFs inhibited ferroptosis of lung cancer cells in vitro and in vivo. The effect of ROR1-AS1 overexpression or IGF2BP1 overexpression on ferroptosis of lung cancer cells was partially reversed by IGF2BP1 silencing or SLC7A11 inhibition. CONCLUSIONS: CAFs secrete exosomal ROR1-AS1 to promote the expression of SLC7A11 by interacting with IGF2BP1, thereby inhibiting ferroptosis of lung cancer cells.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Fibroblastos Asociados al Cáncer , Exosomas , Ferroptosis , Neoplasias Pulmonares , ARN Largo no Codificante , Ferroptosis/genética , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Exosomas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Animales , Ratones , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Línea Celular Tumoral , Transducción de Señal , Ratones Desnudos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación Neoplásica de la Expresión Génica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Ratones Endogámicos BALB C
8.
PLoS One ; 19(5): e0302277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743665

RESUMEN

Enhanced animal welfare has emerged as a pivotal element in contemporary precision animal husbandry, with bovine monitoring constituting a significant facet of precision agriculture. The evolution of intelligent agriculture in recent years has significantly facilitated the integration of drone flight monitoring tools and innovative systems, leveraging deep learning to interpret bovine behavior. Smart drones, outfitted with monitoring systems, have evolved into viable solutions for wildlife protection and monitoring as well as animal husbandry. Nevertheless, challenges arise under actual and multifaceted ranch conditions, where scale alterations, unpredictable movements, and occlusions invariably influence the accurate tracking of unmanned aerial vehicles (UAVs). To address these challenges, this manuscript proposes a tracking algorithm based on deep learning, adhering to the Joint Detection Tracking (JDT) paradigm established by the CenterTrack algorithm. This algorithm is designed to satisfy the requirements of multi-objective tracking in intricate practical scenarios. In comparison with several preeminent tracking algorithms, the proposed Multi-Object Tracking (MOT) algorithm demonstrates superior performance in Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), and IDF1. Additionally, it exhibits enhanced efficiency in managing Identity Switches (ID), False Positives (FP), and False Negatives (FN). This algorithm proficiently mitigates the inherent challenges of MOT in complex, livestock-dense scenarios.


Asunto(s)
Algoritmos , Animales , Bovinos , Crianza de Animales Domésticos/métodos , Dispositivos Aéreos No Tripulados , Bienestar del Animal , Aprendizaje Profundo
9.
Sci Rep ; 14(1): 10463, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714785

RESUMEN

It is a challenging and meaningful task to carry out UAV-based livestock monitoring in high-altitude (more than 4500 m on average) and cold regions (annual average - 4 °C) on the Qinghai Tibet Plateau. The purpose of artificial intelligence (AI) is to execute automated tasks and to solve practical problems in actual applications by combining the software technology with the hardware carrier to create integrated advanced devices. Only in this way, the maximum value of AI could be realized. In this paper, a real-time tracking system with dynamic target tracking ability is proposed. It is developed based on the tracking-by-detection architecture using YOLOv7 and Deep SORT algorithms for target detection and tracking, respectively. In response to the problems encountered in the tracking process of complex and dense scenes, our work (1) Uses optical flow to compensate the Kalman filter, to solve the problem of mismatch between the target bounding box predicted by the Kalman filter (KF) and the input when the target detection in the current frame is complex, thereby improving the prediction accuracy; (2) Using a low confidence trajectory filtering method to reduce false positive trajectories generated by Deep SORT, thereby mitigating the impact of unreliable detection on target tracking. (3) A visual servo controller has been designed for the Unmanned Aerial Vehicle (UAV) to reduce the impact of rapid movement on tracking and ensure that the target is always within the field of view of the UAV camera, thereby achieving automatic tracking tasks. Finally, the system was tested using Tibetan yaks on the Qinghai Tibet Plateau as tracking targets, and the results showed that the system has real-time multi tracking ability and ideal visual servo effect in complex and dense scenes.

10.
Sci Adv ; 10(19): eade9520, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718112

RESUMEN

Fast collective motions are widely present in biomolecules, but their functional relevance remains unclear. Herein, we reveal that fast collective motions of backbone are critical to the water transfer of aquaporin Z (AqpZ) by using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. A total of 212 residue site-specific dipolar order parameters and 158 15N spin relaxation rates of the backbone are measured by combining the 13C- and 1H-detected multidimensional ssNMR spectra. Analysis of these experimental data by theoretic models suggests that the small-amplitude (~10°) collective motions of the transmembrane α helices on the nanosecond-to-microsecond timescales are dominant for the dynamics of AqpZ. The MD simulations demonstrate that these collective motions are critical to the water transfer efficiency of AqpZ by facilitating the opening of the channel and accelerating the water-residue hydrogen bonds renewing in the selectivity filter region.


Asunto(s)
Acuaporinas , Simulación de Dinámica Molecular , Agua , Agua/química , Acuaporinas/química , Acuaporinas/metabolismo , Conformación Proteica en Hélice alfa , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Proteínas de Escherichia coli
11.
Int J Biol Macromol ; 271(Pt 2): 132534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777022

RESUMEN

Hydrogel-based microcarriers have demonstrated effectiveness in wound repair treatments. The current research focus is creating and optimizing active microcarriers containing natural ingredients capable of conforming to diverse wound shapes and depths. Here, microalgae (MA)-loaded living alginate hydrogel microspheres were successfully fabricated via microfluidic electrospray technology, to enhance the effectiveness of wound healing. The stable living alginate hydrogel microspheres loaded with photoautotrophic MA were formed by cross-linking alginate with calcium ions. The combination of MA-loaded living alginate microspheres ensures high biocompatibility and efficient oxygen release, providing strong support for wound healing. Concurrently, vascular endothelial growth factor (VEGF) has been successfully introduced into the microspheres, further enhancing the comprehensive effectiveness of wound treatment. Covering the rat's wound with these MA-VEGF-loaded alginate microspheres further substantiated their significant role in promoting collagen deposition and vascular generation during the wound closure processes. These results confirm the outstanding value of microalgae-loaded live alginate hydrogel microspheres in wound healing, paving the way for new prospects in future clinical treatment methods.


Asunto(s)
Alginatos , Materiales Biocompatibles , Microalgas , Microesferas , Cicatrización de Heridas , Alginatos/química , Microalgas/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Hidrogeles/química , Hidrogeles/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
ACS Nano ; 18(15): 10542-10556, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38561324

RESUMEN

Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias , Humanos , Femenino , Neoplasias de la Mama/terapia , Ácido Hialurónico , Inmunoterapia , Peróxidos , Zinc , Microambiente Tumoral , Línea Celular Tumoral
14.
Clin Transl Oncol ; 26(10): 2395-2417, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38602644

RESUMEN

The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/patología , Neoplasias/terapia , Resistencia a Antineoplásicos , Transducción de Señal , Citocinas/metabolismo , Progresión de la Enfermedad
15.
Sci Rep ; 14(1): 8856, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632350

RESUMEN

Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.


Asunto(s)
Exactitud de los Datos , Potenciales Evocados , Humanos , Teorema de Bayes , Potenciales Evocados/fisiología , Electroencefalografía/métodos , Vigilia
16.
Nat Biomed Eng ; 8(5): 561-578, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514774

RESUMEN

Oncolytic bacteria can trigger innate immune activity. However, the antitumour efficacy of inactivated bacteria is poor, and attenuated live bacteria pose substantial safety risks. Here we show that intratumourally injected paraformaldehyde-fixed bacteria coated with manganese dioxide potently activate innate immune activity, modulate the immunosuppressive tumour microenvironment and trigger tumour-specific immune responses and abscopal antitumour responses. A single intratumoural administration of mineralized Salmonella typhimurium suppressed the growth of multiple types of subcutaneous and orthotopic tumours in mice, rabbits and tree shrews and protected the cured animals against tumour rechallenge. We also show that mineralized bacteria can be administered via arterial embolization to treat orthotopic liver cancer in rabbits. Our findings support the further translational testing of oncolytic mineralized bacteria as potent and safe antitumour immunotherapeutics.


Asunto(s)
Inmunoterapia , Salmonella typhimurium , Microambiente Tumoral , Animales , Salmonella typhimurium/fisiología , Ratones , Conejos , Inmunoterapia/métodos , Óxidos , Compuestos de Manganeso/química , Línea Celular Tumoral , Humanos , Femenino , Inmunidad Innata
17.
Sci China Life Sci ; 67(6): 1292-1301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489008

RESUMEN

Antimicrobial resistance (AMR) poses a critical threat to global health and development, with environmental factors-particularly in urban areas-contributing significantly to the spread of antibiotic resistance genes (ARGs). However, most research to date has been conducted at a local level, leaving significant gaps in our understanding of the global status of antibiotic resistance in urban environments. To address this issue, we thoroughly analyzed a total of 86,213 ARGs detected within 4,728 metagenome samples, which were collected by the MetaSUB International Consortium involving diverse urban environments in 60 cities of 27 countries, utilizing a deep-learning based methodology. Our findings demonstrated the strong geographical specificity of urban environmental resistome, and their correlation with various local socioeconomic and medical conditions. We also identified distinctive evolutionary patterns of ARG-related biosynthetic gene clusters (BGCs) across different countries, and discovered that the urban environment represents a rich source of novel antibiotics. Our study provides a comprehensive overview of the global urban environmental resistome, and fills a significant gap in our knowledge of large-scale urban antibiotic resistome analysis.


Asunto(s)
Antibacterianos , Ciudades , Humanos , Antibacterianos/farmacología , Factores Socioeconómicos , Metagenoma/genética , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Familia de Multigenes , Salud Global
18.
Signal Transduct Target Ther ; 9(1): 40, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355661

RESUMEN

Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de la Nucleocápside/genética , Antivirales/farmacología
19.
J Colloid Interface Sci ; 662: 109-118, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340510

RESUMEN

The impact of Indium (In) doping upon the catalytic performance of Pd-Cu/Al2O3 for carbon monoxide preferential oxidation (CO-PROX) in hydrogen (H2) rich atmosphere at low temperature has been studied. A series of catalysts with extremely low palladium (Pd) loading (0.06 wt%) are synthesized by the facile co-impregnation method. When the In/copper (Cu) atomic ratio equals 0.25, Pd-Cu-In0.25/Al2O3 can keep 40% CO conversion and 100% carbon dioxide (CO2) selectivity at least 120 min at 30 °C, which is significantly superior to the catalytic performance of Pd-Cu/Al2O3. The elaborate characterization findings reveal that the added In species to Pd-Cu/Al2O3 causes Indium oxide (In2O3) to generate, which produces the interaction of In2O3 with Pd-Cu/Al2O3, further promoting the dispersion of copper chloride hydroxide (Cu2Cl(OH)3). Moreover, the modification of In facilitates the re-oxidation of Pd0 to Pd+ through reducing the formation of palladium hydride (PdHx) during the CO-PROX reaction. Meanwhile, the addition of In leads to the decrease of Cu+ electron cloud density, making it easier to be oxidized to Cu2+. Collectively, the easy re-oxidation of Pd0 and Cu+ is favorable to fulfill the Wacker cycle between Pd and Cu species, thus improving the catalytic performance for CO-PROX.

20.
Nanoscale ; 16(4): 1971-1982, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38189456

RESUMEN

It has been widely recognized that adjusting the size of Au particles has emerged as a significant approach in catalyst design, catalyst screening, and comprehension of reaction mechanisms. However, the essential factors of Au nanoparticles used only as an additive to enhance the activity of traditional multicomponent thermocatalysts have not been fully revealed. In this study, a series of Au@Cu2O core-shell nanocatalysts were synthesized through a controllable method, featuring core sizes ranging from 11 to 33 nm and an average shell thickness of approximately 55 nm. It was revealed that the size effect of Au cores plays a very vital role in the stability of the active Cu+ species under reducing atmospheres (H2, acetylene and formaldehyde) as well as the catalytic performance of the catalysts in the ethynylation of formaldehyde. The experimental findings revealed that Au@Cu2O core-shell catalysts with Au core sizes ranging from 11 to 16 nm exhibited a higher abundance of electron-deficient Cu+ species in the shell, which is attributed to the strong long-range electromagnetic effects of the Au core in the absence of photoexcitation or an applied electric field. Additionally, the active Cu+ species demonstrated remarkable stability under reducing atmospheres. Although the stability of Cu+ decreased slightly when the Au core size exceeded 16 nm, the Cu+ content remained above 80%. Notably, the Au@Cu2O catalysts with Au core sizes ranging from 11 to 16 nm exhibited excellent catalytic activity in the ethynylation of formaldehyde.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA