Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
4.
Plant Physiol ; 194(2): 593-594, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38011308
5.
Proc Natl Acad Sci U S A ; 120(48): e2312918120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983505

RESUMEN

Disruption of either the auxin transporter PIN-FORMED 1 (PIN1) or the protein kinase PINOID (PID) leads to the development of pin-like inflorescences. Previous studies have shown that phosphoregulation of PIN1 by AGC kinases including PID directs auxin flux to drive organ initiation. Here, we report unexpected findings on the genetic interactions between these two genes. We deleted the first 2/3 of the PIN1 coding sequence using CRISPR/Cas9, and the resulting pin1 mutant (pin1-27) was a strong allele. Surprisingly, heterozygous pin1-27 suppressed two independent pid null mutants, whereas homozygous pin1-27 enhanced the phenotypes of the pid mutants during embryogenesis. Furthermore, we show that deletion of either the hydrophilic loop or the second half of PIN1 also abolished PIN1 function, yet those heterozygous pin1 mutants were also capable of rescuing pid nulls. Moreover, we inserted green fluorescent protein (GFP) into the hydrophilic loop of PIN1 through CRISPR-mediated homology-directed repair (HDR). The GFP signal and pattern in the PIN1-GFPHDR line are similar to those in the previously reported PIN1-GFP transgenic lines. Interestingly, the PIN1-GFPHDR line also rescued various pid null mutant alleles in a semidominant fashion. We conclude that decreasing the number of functional PIN1 copies is sufficient to suppress the pid mutant phenotype, suggesting that PIN1 is likely part of a larger protein complex required for organogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación , Fenotipo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo
6.
EMBO Rep ; 24(4): e56271, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36718777

RESUMEN

Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Ácidos Indolacéticos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Physiol ; 191(2): 809-810, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36459459
8.
Proc Natl Acad Sci U S A ; 119(49): e2209256119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454752

RESUMEN

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases. The crystal structure of Arabidopsis GH3.6 in complex with D4 (a derivative of nalacin) together with docking simulation analysis revealed the molecular basis of the inhibition of group II GH3 by nalacin. Sequence alignment analysis indicated broad bioactivities of nalacin and D4 as inhibitors of GH3s in vascular plants, which were confirmed, at least, in tomato and rice. In summary, our work identifies nalacin as a potent inhibitor of IAA conjugation mediated by group II GH3 that plays versatile roles in hormone-regulated plant development and has potential applications in both basic research and agriculture.


Asunto(s)
Arabidopsis , Ligasas , Arabidopsis/genética , Ácidos Indolacéticos/farmacología , Fenómenos Químicos , Reguladores del Crecimiento de las Plantas/farmacología , Pruebas Genéticas
9.
Front Genome Ed ; 4: 960414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147557

RESUMEN

Genome editing technologies provide a powerful tool for genetic improvement of perennial ryegrass, an important forage and turfgrass species worldwide. The sole publication for gene editing in perennial ryegrass used gene-gun for plant transformation and a dual promoter based CRISPR/Cas9 system for editing. However, their editing efficiency was low (5.9% or only one gene-edited plant produced). To test the suitability of the maize Ubiquitin 1 (ZmUbi1) promoter in gene editing of perennial ryegrass, we produced ZmUbi1 promoter:RUBY transgenic plants. We observed that ZmUbi1 promoter was active in callus tissue prior to shoot regeneration, suggesting that the promoter is suitable for Cas9 and sgRNA expression in perennial ryegrass for high-efficiency production of bi-allelic mutant plants. We then used the ZmUbi1 promoter for controlling Cas9 and sgRNA expression in perennial ryegrass. A ribozyme cleavage target site between the Cas9 and sgRNA sequences allowed production of functional Cas9 mRNA and sgRNA after transcription. Using Agrobacterium for genetic transformation, we observed a 29% efficiency for editing the PHYTOENE DESATURASE gene in perennial ryegrass. DNA sequencing analyses revealed that most pds plants contained bi-allelic mutations. These results demonstrate that the expression of a single Cas9 and sgRNA transcript unit controlled by the ZmUbi1 promoter provides a highly efficient system for production of bi-allelic mutants of perennial ryegrass and should also be applicable in other related grass species.

10.
Proc Natl Acad Sci U S A ; 119(32): e2206869119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914172

RESUMEN

The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.


Asunto(s)
Homeostasis , Ácidos Indolacéticos , Arabidopsis , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
12.
13.
Curr Biol ; 32(8): R370-R372, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35472426

RESUMEN

Pollen grains stock up on starch to power germination and pollen tube growth upon pollination. New findings in barley show that localized auxin biosynthesis by a YUC flavin monooxygenase leads to reprogramming energy metabolism during pollen maturation.


Asunto(s)
Hordeum , Biología , Hordeum/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Polen/metabolismo
17.
Plant Physiol ; 188(4): 1757-1768, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34893903

RESUMEN

Transgene residuals in edited plants affect genetic analysis, pose off-target risks, and cause regulatory concerns. Several strategies have been developed to efficiently edit target genes without leaving any transgenes in plants. Some approaches directly address this issue by editing plant genomes with DNA-free reagents. On the other hand, DNA-based techniques require another step for ensuring plants are transgene-free. Fluorescent markers, pigments, and chemical treatments have all been employed as tools to distinguish transgenic plants from transgene-free plants quickly and easily. Moreover, suicide genes have been used to trigger self-elimination of transgenic plants, greatly improving the efficiency of isolating the desired transgene-free plants. Transgenes can also be excised from plant genomes using site-specific recombination, transposition or gene editing nucleases, providing a strategy for editing asexually produced plants. Finally, haploid induction coupled with gene editing may make it feasible to edit plants that are recalcitrant to transformation. Here, we evaluate the strengths and weaknesses of recently developed approaches for obtaining edited plants without transgene residuals.


Asunto(s)
Edición Génica , Genoma de Planta , Plantas Modificadas Genéticamente , Endonucleasas/genética , Edición Génica/métodos , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética , Transgenes
18.
Plant Physiol ; 188(2): 919-920, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931245
19.
Biochem Biophys Res Commun ; 589: 16-22, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34883285

RESUMEN

Gretchen Hagen 3 (GH3) amido synthetases conjugate amino acids to a carboxyl group of small molecules including hormones auxin, jasmonate, and salicylic acid. The Arabidopsis genome harbors 19 GH3 genes, whose exact roles in plant development have been difficult to define because of genetic redundancy among the GH3 genes. Here we use CRISPR/Cas9 gene editing technology to delete the Arabidopsis group II GH3 genes, which are able to conjugate indole-3-acetic acid (IAA) to amino acids. We show that plants lacking the eight group II GH3 genes (gh3 octuple mutants) accumulate free IAA and fail to produce IAA-Asp and IAA-Glu conjugates. Consequently, gh3 octuple mutants have extremely short roots, long and dense root hairs, and long hypocotyls. Our characterization of gh3 septuple mutants, which provide sensitized backgrounds, reveals that GH3.17 and GH3.9 play prominent roles in root elongation and seed production, respectively. We show that GH3 functions correlate with their expression patterns, suggesting that local deactivation of auxin also contributes to maintaining auxin homeostasis. Moreover, this work provides a method for elucidating functions of individual members of a gene family, whose members have overlapping functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Ácidos Indolacéticos , Ligasas , Raíces de Plantas , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/enzimología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Ácidos Indolacéticos/metabolismo , Ligasas/genética , Ligasas/metabolismo , Familia de Multigenes , Mutación/genética , Fenotipo , Desarrollo de la Planta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo
20.
Nat Commun ; 12(1): 6752, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811366

RESUMEN

Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Amidohidrolasas , Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Ácido Aspártico , Dioxigenasas , Regulación de la Expresión Génica de las Plantas , Ácido Glutámico , Homeostasis , Hidrólisis , Oxidación-Reducción , Estrés Oxidativo , Oxindoles/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA