Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 80(8): 240, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296240

RESUMEN

Improving the utilization rate of loaded-drugs is of huge importance for generating chitosan-based (CS) micro-carriers. This study aims to fabricate a novel CS microspheres co-delivered curcumin (Cur) and gallic acid (Ga) to assess drug loading and release kinetics, the blood compatibility and anti-osteosarcoma properties. The present study observes the interaction between CS and Cur/Ga molecules and estimates the change in crystallinity and loading and release rate. In addition, blood compatibility and cytotoxicity of such microspheres are also evaluated. Cur-Ga-CS microspheres present high entrapment rate of (55.84 ± 0.34) % for Ga and (42.68 ± 0.11) % for Cur, possibly attributed to surface positive charge (21.76 ± 2.46) mV. Strikingly, Cur-Ga-CS microspheres exhibit slowly sustainable release for almost 7 days in physiological buffer. Importantly, these microspheres possess negligibly toxic to blood and normal BMSC cells, but strong anti-osteosarcoma effect on U2OS cells. Overall, Cur-Ga-CS microspheres are promising to become a novel anti-osteosarcoma agent or sustainable delivery carrier in biomedical applications.


Asunto(s)
Quitosano , Curcumina , Nanopartículas , Curcumina/farmacología , Quitosano/farmacología , Portadores de Fármacos , Microesferas
2.
J Orthop Surg Res ; 18(1): 160, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864471

RESUMEN

BACKGROUND: The repair of articular cartilage defects has always been a difficult problem. We aimed to investigate the therapeutic effect of intra-articular injection of platelet-rich plasma (RPR) and PRP-derived exosomes (PRP-Exos) on cartilage defects in rat knee joints and then provide experience for the use of PRP-exos in cartilage defect repair. METHODS: Rat abdominal aortic blood was collected, and PRP was extracted by two-step centrifugation. PRP-exos were obtained by kit extraction, and PRP-exos were identified by various methods. After the rats were anesthetized, a cartilage defect subchondral bone was created at the proximal end of the origin of the femoral cruciate ligament with a drill. SD rats were divided into 4 groups, including PRP group, 50 µg/ml PRP-exos group, 5 µg/ml PRP-exos group, and control group. One week after the operation, 50 µg/ml PRP, 50 µg/ml PRP-exos, 5 µg/ml PRP-exos and normal saline were injected into the knee joint cavity of rats in each group, once a week. A total of two injections were given. On the 5th and 10th week after drug injection, the serum levels of matrix metalloproteinase 3 (MMP-3) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) were detected by each treatment method, respectively. The rats were killed at the 5th and 10th weeks, respectively, and the cartilage defect repair was observed and scored. The defect repair tissue sections were used for HE staining and type II collagen immunohistochemical staining. RESULTS: The histological results showed that both PRP-exos and PRP could promote cartilage defect repair and type II collagen formation, and the promoting effect of PRP-exos was significantly better than that of PRP. In addition, enzyme-linked immunosorbent assay (ELISA) results showed that compared with PRP, PRP-exos could significantly increase serum TIMP-1 and decrease serum MMP-3 in rats. And the promoting effect of PRP-exos was concentration dependent. CONCLUSION: Intra-articular injection of PRP-exos and PRP can promote the repair of articular cartilage defects, and the therapeutic effect of PRP-exos is better than the same concentration of PRP. PRP-exos are expected to be an effective treatment for cartilage repair and regeneration.


Asunto(s)
Exosomas , Plasma Rico en Plaquetas , Animales , Ratas , Ratas Sprague-Dawley , Metaloproteinasa 3 de la Matriz , Colágeno Tipo II , Inhibidor Tisular de Metaloproteinasa-1 , Articulación de la Rodilla
3.
Rev Sci Instrum ; 93(12): 123501, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586905

RESUMEN

Two pairs of space-resolved extreme ultraviolet (EUV) spectrometers working at 5-138 Å with different vertical observation ranges of -7 ≤ Z ≤ 19 and -18 ≤ Z ≤ 8 cm have been newly developed to observe the radial profile of impurity line emissions and to study the transport of high-Z impurity ions intrinsically existing in EAST tokamak plasmas. Both spectrometers are equipped with a complementary metal-oxide semiconductor (CMOS) detector (Andor Marana-X 4.2B-6, Oxford Instruments) with sensitive area of 13.3 × 13.3 mm2 and number of pixels equal to 2048 × 2048 (6.5 × 6.5 µm2/pixels). Compared to the currently operating space-resolved EUV spectrometers with a charge-coupled detector (CCD: 1024 × 255 pixels, 26 × 26 µm2) working at 30-520 Å, this spectrometer's performance was substantially improved by using the CMOS detector. First, the spectral resolution measured at full width at half maximum was improved in the whole wavelength range, e.g., Δλ1/2_CMOS = 0.092 Å and Δλ1/2_CCD = 0.124 Å at C VI 33.73 Å and Δλ1/2_CMOS = 0.104 Å and Δλ1/2_CCD = 0.228 Å at Mo XXXI 115.999 Å, thus enabling a more accurate analysis of spectra with complicated structure such as tungsten unresolved transition array in the range 45-65 Å. Second, the temporal resolution was largely improved due to the high-speed data acquisition system of the CMOS detector, e.g., Δt_CMOS = 15 ms/frame and Δt_CCD = 200 ms/frame at routine operation in the radial profile measurement. Third, signal saturation issues that occurred when using the old CCD sensor during impurity accumulation now disappeared entirely using the CMOS detector due to lower exposure time at high readout rates, which largely improved the observation performance in similar impurity burst events. The above-mentioned performance improvements of the space-resolved EUV spectrometer led to a rapid change in the W XXXIII (52.22 Å) radial profile during a single cycle of low-frequency sawtooth oscillation with fst = 5-6 Hz at a sufficient detector count rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA