Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
G3 (Bethesda) ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37708394

RESUMEN

Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.


Asunto(s)
Quercus , Quercus/genética , Filogenia , Haplotipos , Genómica , Cromosomas
2.
PLoS One ; 14(5): e0216371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071130

RESUMEN

Floral self-incompatibility affecting yearly yield in a weather-dependent manner and graft incompatibility affecting longevity of mature trees are two important traits for apricot production. However, genetic control of graft compatibility and relationship between these traits are unknown. Here, we analyzed its inheritance in an F1 apricot progeny from a cross between self- and graft- incompatible and self- and graft-compatible cultivars. Hybrid individuals were genotyped for establishing self-incompatibility status and grafted on the plum rootstock 'Marianna 2624'. Phenotyping of graft incompatibility was done at two time points, one month and one year after grafting. Anatomical (necrotic layer, bark and wood discontinuity for two consecutive years) and cytomorphological (cell proliferation, cell arrangement and cell shape one month after grafting) characteristics related to graft compatibility displayed continuous variation within the progeny, suggesting a polygenic inheritance. Using the Pearson correlation test, strong and significant correlations were detected between anatomical and cytomorphological traits that may reduce the number of characters for screening genotypes or progenies for graft compatibility in segregating crosses. Furthermore, no correlation existed between self- and graft incompatibility traits suggesting that they are independent inheritance traits. Hence, screening an extended hybrid population is required for pyramiding these traits in breeding programs.


Asunto(s)
Cruzamientos Genéticos , Prunus armeniaca/genética , Carácter Cuantitativo Heredable
3.
Nat Genet ; 45(5): 487-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525075

RESUMEN

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Asunto(s)
Agricultura , Evolución Biológica , Variación Genética , Genoma de Planta/genética , Prunus/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Datos de Secuencia Molecular , Polímeros/metabolismo , Propanoles/metabolismo , Prunus/clasificación
4.
BMC Genomics ; 7: 81, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16615871

RESUMEN

BACKGROUND: Due to the lack of availability of large genomic sequences for peach or other Prunus species, the degree of synteny conservation between the Prunus species and Arabidopsis has not been systematically assessed. Using the recently available peach EST sequences that are anchored to Prunus genetic maps and to peach physical map, we analyzed the extent of conserved synteny between the Prunus and the Arabidopsis genomes. The reconstructed pseudo-ancestral Arabidopsis genome, existed prior to the proposed recent polyploidy event, was also utilized in our analysis to further elucidate the evolutionary relationship. RESULTS: We analyzed the synteny conservation between the Prunus and the Arabidopsis genomes by comparing 475 peach ESTs that are anchored to Prunus genetic maps and their Arabidopsis homologs detected by sequence similarity. Microsyntenic regions were detected between all five Arabidopsis chromosomes and seven of the eight linkage groups of the Prunus reference map. An additional 1097 peach ESTs that are anchored to 431 BAC contigs of the peach physical map and their Arabidopsis homologs were also analyzed. Microsyntenic regions were detected in 77 BAC contigs. The syntenic regions from both data sets were short and contained only a couple of conserved gene pairs. The synteny between peach and Arabidopsis was fragmentary; all the Prunus linkage groups containing syntenic regions matched to more than two different Arabidopsis chromosomes, and most BAC contigs with multiple conserved syntenic regions corresponded to multiple Arabidopsis chromosomes. Using the same peach EST datasets and their Arabidopsis homologs, we also detected conserved syntenic regions in the pseudo-ancestral Arabidopsis genome. In many cases, the gene order and content of peach regions was more conserved in the ancestral genome than in the present Arabidopsis region. Statistical significance of each syntenic group was calculated using simulated Arabidopsis genome. CONCLUSION: We report here the result of the first extensive analysis of the conserved microsynteny using DNA sequences across the Prunus genome and their Arabidopsis homologs. Our study also illustrates that both the ancestral and present Arabidopsis genomes can provide a useful resource for marker saturation and candidate gene search, as well as elucidating evolutionary relationships between species.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Genoma de Planta , Prunus/genética , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Mapeo Contig , Etiquetas de Secuencia Expresada , Ligamiento Genético , Genómica , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
5.
Theor Appl Genet ; 110(8): 1419-28, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15846479

RESUMEN

Peach (Prunus persica) is a model species for the Rosaceae, which includes a number of economically important fruit tree species. To develop an extensive Prunus expressed sequence tag (EST) database for identifying and cloning the genes important to fruit and tree development, we generated 9,984 high-quality ESTs from a peach cDNA library of developing fruit mesocarp. After assembly and annotation, a putative peach unigene set consisting of 3,842 ESTs was defined. Gene ontology (GO) classification was assigned based on the annotation of the single "best hit" match against the Swiss-Prot database. No significant homology could be found in the GenBank nr databases for 24.3% of the sequences. Using core markers from the general Prunus genetic map, we anchored bacterial artificial chromosome (BAC) clones on the genetic map, thereby providing a framework for the construction of a physical and transcript map. A transcript map was developed by hybridizing 1,236 ESTs from the putative peach unigene set and an additional 68 peach cDNA clones against the peach BAC library. Hybridizing ESTs to genetically anchored BACs immediately localized 11.2% of the ESTs on the genetic map. ESTs showed a clustering of expressed genes in defined regions of the linkage groups. [The data were built into a regularly updated Genome Database for Rosaceae (GDR), available at (http://www.genome.clemson.edu/gdr/).].


Asunto(s)
Mapeo Cromosómico , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Genoma de Planta , Prunus/genética , Cruzamiento/métodos , Cromosomas Artificiales Bacterianos , Biblioteca de Genes , Plásmidos/genética , Análisis de Secuencia de ADN
6.
Genome ; 45(2): 319-28, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11962629

RESUMEN

Simple sequence repeats (SSRs) have proven to be highly polymorphic, easily reproducible, codominant markers. However, developing an SSR map is very time consuming and expensive, and most SSRs are not specifically linked to gene loci of immediate interest. The ideal situation would be to combine a high-throughput, relatively inexpensive mapping technique with rapid identification of SSR loci in mapped regions of interest. For this reason, we coupled the high-throughput technique of AFLP mapping with subsequent direct targeting of SSRs identified in AFLP-marked regions of interest. This approach relied on the availability of peach bacterial artificial chromosome (BAC) library resources. We present examples of using this strategy to rapidly identify SSR loci tightly linked to two important, simply inherited traits in peach (Prunus persica (L.) Batsch): root-knot nematode resistance and control of the evergrowing trait. SSRs developed in this study were also tested for their transportability in other Prunus species and in apricots.


Asunto(s)
Prunus/genética , Secuencias Repetidas en Tándem , Alelos , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Cruzamientos Genéticos , ADN de Plantas/análisis , Biblioteca de Genes , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Repeticiones de Microsatélite , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA