Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Science ; 386(6721): 516-525, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39480921

RESUMEN

Malformations of the brain are common and vary in severity, from negligible to potentially fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the core protein-folding machinery TRiC/CCT in individuals with brain malformations, intellectual disability, and seizures. The chaperonin TRiC is an obligate hetero-oligomer, and we identify variants in seven of its eight subunits, all of which impair function or assembly through different mechanisms. Transcriptome and proteome analyses of patient-derived fibroblasts demonstrate the various consequences of TRiC impairment. The results reveal an unexpected and potentially widespread role for protein folding in the development of the central nervous system and define a disease spectrum of "TRiCopathies."


Asunto(s)
Encéfalo , Chaperonina con TCP-1 , Pliegue de Proteína , Convulsiones , Humanos , Chaperonina con TCP-1/metabolismo , Chaperonina con TCP-1/genética , Encéfalo/metabolismo , Convulsiones/metabolismo , Convulsiones/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Fibroblastos/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Masculino , Proteoma/metabolismo , Transcriptoma , Femenino
2.
Clin Genet ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300798

RESUMEN

Reversible protein phosphorylation is a ubiquitous phenomenon essential for eukaryotic cellular processes. Recent advancements in research about neurodevelopmental disorders have prompted investigations into the intricate relationship between protein phosphatases, particularly phosphoprotein phosphatases (PPPs), and neurodevelopment. Notably, variants in 10 coding genes spanning four PPP family members have been implicated in neurodevelopmental disorders. Here, we provide a comprehensive overview of the clinical phenotypes, genotypes, and pathogenic mechanisms observed in affected patients. Our analysis reveals challenges in subsequent statistical analyses due to inconsistent clinical phenotypic descriptions and a lack of large multicenter studies, hampering analysis about genotype-phenotype correlations. The scarcity of follow-up data poses a significant obstacle to prognostic counseling for nearly all rare diseases. Presently, symptomatic treatment strategies are employed for patients with variants, as definitive cures remain elusive. Future research may explore protein phosphatase regulators as potential therapeutic targets. Furthermore, it is imperative not to overlook other members of the protein phosphatase family or coding genes with undiscovered variants. Insights gleaned from the temporal and spatial distribution of proteins, along with observations from animal model phenotypes, may provide valuable directions for uncovering novel pathogenic genes.

3.
Sci Rep ; 14(1): 18876, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143102

RESUMEN

Progressive familial intrahepatic cholestasis (PFIC) is a rare childhood manifested disease associated with impaired bile secretion with severe pruritus yellow stool, and sometimes hepatosplenomegaly. PFIC is caused by mutations in ATP8B1, ABCB11, ABCB4, TJP2, NR1H4, SLC51A, USP53, KIF12, ZFYVE19, and MYO5B genes depending on its type. ABCB11 mutations lead to PFIC2 that encodes the bile salt export pump (BSEP). Different mutations of ABCB11 have been reported in different population groups but no data available in Pakistani population being a consanguineous one. We sequenced coding exons of the ABCB11 gene along with its flanking regions in 66 unrelated Pakistani children along with parents with PFIC2 phenotype. We identified 20 variations of ABCB11: 12 in homozygous form, one compound heterozygous, and seven heterozygous. These variants include 11 missenses, two frameshifts, two nonsense mutations, and five splicing variants. Seven variants are novel candidate variants and are not detected in any of the 120 chromosomes from normal ethnically matched individuals. Insilico analysis revealed that four homozygous missense variations have high pathogenic scores. Minigene analysis of splicing variants showed exon skipping and the addition of exon. This data is a useful addition to the disease variants genomic database and would be used in the future to build a diagnostic algorithm.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Colestasis Intrahepática , Humanos , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Colestasis Intrahepática/genética , Pakistán , Masculino , Femenino , Niño , Preescolar , Lactante , Mutación , Exones/genética , Estudios de Cohortes , Homocigoto
4.
Am J Hum Genet ; 111(9): 1994-2011, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39168120

RESUMEN

Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/ß-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/ß-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/ß-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/ß-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/ß-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.


Asunto(s)
Encéfalo , Mutación de Línea Germinal , Trastornos del Neurodesarrollo , Fenotipo , Ubiquitina-Proteína Ligasas , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Femenino , Masculino , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , beta Catenina/genética , beta Catenina/metabolismo , Adolescente , Mutación Missense , Estudios de Asociación Genética , Dominios Proteicos
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 677-682, 2024 Jul 15.
Artículo en Chino | MEDLINE | ID: mdl-39014942

RESUMEN

OBJECTIVES: To study the diagnosis, treatment, and complications of hypophosphatemic rickets (HR) in children, explore effectiveness evaluation indicators for the disease, and understand the pattern in height growth among these patients. METHODS: A retrospective analysis of the initial clinical data and five-year follow-up data of 85 children with HR treated at Children's Hospital of Nanjing Medical University from January 2008 to December 2022. RESULTS: Among the 85 children with HR, there were 46 males (54%) and 39 females (46%). The age at initial diagnosis ranged from 6 months to 13 years and 9 months, with a median age of 2.75 years. The average height standard deviation score was -2.0±1.1. At initial diagnosis, children exhibited reduced blood phosphate levels and elevated alkaline phosphatase (ALP), with 99% (84/85) presenting with lower limb deformities. The positive rate for PHEX gene mutations was 93% (55/59). One year post-treatment, there was a significant reduction in ALP levels and the gap between the lower limbs (P<0.05). The fastest height growth occurred in the first year after treatment, at 8.23 cm/year, with a peak height velocity (PHV) phase lasting about two years during puberty. The height increased by 9-20 cm in male children during the PHV stage and 10-15 cm in female children. Major complications included nephrocalcinosis and hyperparathyroidism. The incidence rate of nephrocalcinosis in the first year after treatment was 55% (22/40), which increased with the duration of the disease (P<0.001); an increased urinary phosphate/creatinine ratio was positively associated with a higher risk of nephrocalcinosis (OR=1.740, P<0.001). The incidence of hyperparathyroidism in the first year after treatment was 64% (27/42). CONCLUSIONS: For children presenting with lower limb deformities, short stature, and slow growth, early testing for blood levels of phosphate, calcium, and ALP, along with imaging examinations of the lower limbs, can aid in the early diagnosis of HR. Genetic testing may be utilized for definitive confirmation when necessary. ALP combined with improvements in skeletal deformities and annual height growth can serve as indicators of therapeutic effectiveness for HR. Compared to normal children, children with HR demonstrate a lower height increase during the PHV phase, necessitating close follow-up and timely adjustment of treatment plans Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 677-682.


Asunto(s)
Raquitismo Hipofosfatémico , Humanos , Masculino , Femenino , Niño , Estudios Retrospectivos , Preescolar , Lactante , Adolescente , Estudios de Seguimiento , Raquitismo Hipofosfatémico/genética , Raquitismo Hipofosfatémico/etiología , Fosfatasa Alcalina/sangre , Estatura , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Fosfatos/sangre , Mutación
6.
Front Genet ; 15: 1347933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050258

RESUMEN

Background: Snijders Blok-Campeau syndrome (SNIBCPS) is a rare genetic disorder characterized by facial abnormalities, hypotonia, macrocephaly, and global developmental delay (GDD) caused by mutations in CHD3 gene. There is limited information on SNIBCPS and few studies on its pathogenic gene CHD3. Methods: We utilized whole-exome sequencing, in vitro minigene splicing assay analysis, and construction of protein models to validate the suspected pathogenic mutation. In addition, the PubMed database was searched using the keywords "Snijders Blok-Campeau syndrome," "CHD3," or "SNIBCPS" to summarize the gene mutations and clinical phenotypic characteristics of children with SNIBCPS. Results: We identified a non-frameshift variant c.3592_c.3606delGCCAAGAGAAAGATG, a splice site variant c.1708-1G>T, and two missense variants, c. 2954G>C (p.Arg985Pro) and c.3371C>T (p.A1124V), in CHD3 variants with SNIBCPS. Importantly, the c.3592_c.3606delGCCAAGAGAAAGATG, c.1708-1G>T, and c.3371C > T (p.A1124V) loci were not reported, and the children in this study also had phenotypic features of unibrow, transverse palmar creases, tracheal bronchus, and hypomelanosis of Ito (HI). The c.1708-1G>T classical splicing mutation leads to abnormal shearing of mRNA, forming a truncated protein that ultimately affects gene function. Conclusion: Our findings have expanded the spectrum of genetic variants and clinical features in children with SNIBCPS. Splicing analysis of CHD3 is an important method to understand the pathogenesis of spliced cells.

7.
Clin Kidney J ; 17(6): sfae124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38915441

RESUMEN

The ANKFY1 gene encodes a protein that belongs to double zinc finger proteins involved in endocytosis. Only one family with steroid-resistant nephrotic syndrome has been reported carrying a homozygous variant in ANKFY1 so far. Here we describe the second case where a 13-year-old boy presented with infantile-onset proteinuria and movement disorder. Whole-exome sequencing showed compound heterozygous variants (NM_001330063.2: c.2753C>G; p.Ser918Ter, and c.3287-11_3287-10del) in ANKFY1. In vitro functional study revealed the two variants led to reduced protein expression level of ANKFY1. This is the first case of co-existence of renal and nervous system phenotypes in a child with variants in ANKFY1, suggesting that bi-allelic variants in ANKFY1 might be associated with a new neuro-renal syndrome.

8.
Clin Genet ; 106(3): 354-359, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38780184

RESUMEN

Emerging research has demonstrated that genomic alterations disrupting topologically associated domains (TADs) and chromatin interactions underlie the pathogenic mechanisms of specific copy number variants (CNVs) in neurodevelopmental disorders. We report two patients with a de novo deletion and a duplication in chromosome 4q31, potentially causing FBX-related neurodevelopmental syndrome by affecting the regulatory region of FBXW7. High-throughput chromosome conformation capture (Hi-C) analysis using available capture data in neural progenitor cells revealed the rewiring of the TAD boundary close to FBXW7. Both patients exhibited facial dysmorphisms, cardiac and limb abnormalities, and neurodevelopmental delays, showing significant clinical overlap with previously reported FBXW7-related features. We also included an additional 10 patients with CNVs in the 4q31 region from the literature and the DECIPHER database for Hi-C analysis, which confirmed that disruption of the regulatory region of FBXW7 likely contributes to the developmental defects observed in these patients.


Asunto(s)
Cromosomas Humanos Par 4 , Variaciones en el Número de Copia de ADN , Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Variaciones en el Número de Copia de ADN/genética , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Cromosomas Humanos Par 4/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Predisposición Genética a la Enfermedad , Niño , Lactante
9.
Kidney Dis (Basel) ; 10(1): 61-68, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322629

RESUMEN

Introduction: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of end-stage kidney disease in children, mostly associated with focal segmental glomerulosclerosis (FSGS). Advances in genomic science have enabled the identification of causative variants in 20-30% of SRNS patients. Methods: We used whole exome sequencing to explore the genetic causes of SRNS in children. Totally, 101 patients with SRNS and 13 patients with nephrotic proteinuria and FSGS were retrospectively enrolled in our hospital between 2018 and 2022. For the known monogenic causes analysis, we generated a known SRNS gene list of 71 genes through reviewing the OMIM database and literature. Results: Causative variants were identified in 23.68% of our cohort, and the most frequently mutated genes in our cohort were WT1 (7/27), NPHS1 (3/27), ADCK4 (3/27), and ANLN (2/27). Five patients carried variants in phenocopy genes, including MYH9, MAFB, TTC21B, AGRN, and FAT4. The variant detection rate was the highest in the two subtype groups with congenital nephrotic syndrome and syndromic SRNS. In total, 68.75% of variants we identified were novel and have not been previously reported in the literature. Conclusion: Comprehensive genetic analysis is key to realizing the clinical benefits of a genetic diagnosis. We suggest that all children with SRNS undergo genetic testing, especially those with early-onset and extrarenal phenotypes.

10.
Mol Genet Genomic Med ; 12(2): e2407, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404237

RESUMEN

BACKGROUND: Germline gain-of-function (GOF) variants in the signal transducer and activator of transcription 3 (STAT3) gene lead to a rare inherited disorder characterized by early-onset multiorgan autoimmunity. METHODS: We described a Chinese patient with infantile-onset diabetes and multiorgan autoimmunity. The patient presented with early-onset type 1 diabetes and autoimmune hypothyroidism at 7 months. During the 7.5-year follow-up, she developed pseudo-celiac enteropathy at 1 year of age and showed severe growth retardation. Whole-exome sequencing was performed and the novel variant was further assessed by in vitro functional assays. RESULTS: Whole-exome sequencing revealed a novel variant (c.1069G>A, p.Glu357Lys) in the DNA-binding domain of STAT3. In vitro functional studies revealed that p.Glu357Lys was a GOF variant by increasing STAT3 transcriptional activity and phosphorylation. In addition, the STAT3 Glu357Lys variant caused dysregulation of insulin gene expression by enhancing transcriptional inhibition of the insulin gene enhancer binding protein factor 1 (ISL1). CONCLUSION: In the current study, we describe clinical manifestations and identify a novel STAT3 GOF variant (c.1069G>A) in a Chinese patient. This activating variant impairs insulin expression by increasing transcriptional inhibition of its downstream transcription factor ISL1, which could be involved in the pathogenesis of early-onset diabetes.


Asunto(s)
Autoinmunidad , Diabetes Mellitus , Femenino , Humanos , Autoinmunidad/genética , Mutación con Ganancia de Función , Insulina/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
11.
Hepatol Int ; 18(2): 661-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37314652

RESUMEN

BACKGROUND AND AIMS: Cholestatic liver disease is a leading referral to pediatric liver transplant centers. Inherited disorders are the second most frequent cause of cholestasis in the first month of life. METHODS: We retrospectively characterized the genotype and phenotype of 166 participants with intrahepatic cholestasis, and re-analyzed phenotype and whole-exome sequencing (WES) data from patients with previously undetermined genetic etiology for newly published genes and novel candidates. Functional validations of selected variants were conducted in cultured cells. RESULTS: Overall, we identified disease-causing variants in 31% (52/166) of our study participants. Of the 52 individuals, 18 (35%) had metabolic liver diseases, 9 (17%) had syndromic cholestasis, 9 (17%) had progressive familial intrahepatic cholestasis, 3 (6%) had bile acid synthesis defects, 3(6%) had infantile liver failure and 10 (19%) had a phenocopy of intrahepatic cholestasis. By reverse phenotyping, we identified a de novo variant c.1883G > A in FAM111B of a case with high glutamyl transpeptidase (GGT) cholestasis. By re-analyzing WES data, two patients were newly solved, who had compound heterozygous variants in recently published genes KIF12 and USP53, respectively. Our additional search for novel candidates in unsolved WES families revealed four potential novel candidate genes (NCOA6, CCDC88B, USP24 and ATP11C), among which the patients with variants in NCOA6 and ATP11C recapitulate the cholestasis phenotype in mice models. CONCLUSIONS: In a single-center pediatric cohort, we identified monogenic variants in 22 known human intrahepatic cholestasis or phenocopy genes, explaining up to 31% of the intrahepatic cholestasis patients. Our findings suggest that re-evaluating existing WES data from well-phenotyped patients on a regular basis can increase the diagnostic yield for cholestatic liver disease in children.


Asunto(s)
Colestasis Intrahepática , Colestasis , Proteínas de Transporte de Membrana , Niño , Humanos , Animales , Ratones , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Colestasis Intrahepática/genética , Colestasis Intrahepática/diagnóstico , Mutación , Cinesinas/genética , Ubiquitina Tiolesterasa/genética , Proteasas Ubiquitina-Específicas/genética , Proteínas de Ciclo Celular/genética , Adenosina Trifosfatasas/genética
12.
Front Neurol ; 14: 1096969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789889

RESUMEN

Objective: The dysfunction of the CLCN4 gene can lead to X-linked intellectual disability and Raynaud-Claes syndrome (MRXSRC), characterized by severe cognitive impairment and mental disorders. This study aimed to investigate the genetic defects and clinical features of Chinese children with CLCN4 variants and explore the effect of mutant ClC-4 on the protein expression level and subcellular localization through in vitro experiments. Methods: A total of 401 children with intellectual disabilities were screened for genetic variability using whole-exome sequencing (WES). Clinical data, including age, sex, perinatal conditions, and environmental exposure, were collected. Cognitive, verbal, motor, and social behavioral abilities were evaluated. Candidate variants were verified using Sanger sequencing, and their pathogenicity and conservation were analyzed using in silico prediction tools. Protein expression and localization of mutant ClC-4 were measured using Western blotting (WB) and immunofluorescence microscopy. The impact of a splice site variant was assessed with a minigene assay. Results: Exome analysis identified five rare CLCN4 variants in six unrelated patients with intellectual disabilities, including two recurrent heterozygous de novo missense variants (p.D89N and p.A555V) in three female patients, and two hemizygous missense variants (p.N141S and p.R694Q) and a splicing variant (c.1390-12T > G) that are maternally inherited in three male patients. The p.N141S variant and the splicing variant c.1390-12(T > G were novel, while p.R694Q was identified in two asymptomatic heterozygous female patients. The six children with CLCN4 variants exhibited a neurodevelopmental spectrum disease characterized by intellectual disability (ID), delayed speech, autism spectrum disorders (ASD), microcephaly, hypertonia, and abnormal imaging findings. The minigene splicing result indicated that the c.1390-12T > G did not affect the splicing of CLCN4 mRNA. In vitro experiments showed that the mutant protein level and localization of mutant protein are similar to the wild type. Conclusion: The study identified six probands with CLCN4 gene variants associated with X-linked ID. It expanded the gene and phenotype spectrum of CLCN4 variants. The bioinformatic analysis supported the pathogenicity of CLCN4 variants. However, these CLCN4 gene variants did not affect the ClC-4 expression levels and protein location, consistent with previous studies. Further investigations are necessary to investigate the pathogenetic mechanism.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 705-710, 2023 Jul 15.
Artículo en Chino | MEDLINE | ID: mdl-37529952

RESUMEN

OBJECTIVES: To study the value of serum fibroblast growth factor 23 (FGF23) in the diagnosis of hypophosphatemic rickets in children. METHODS: A total of 28 children who were diagnosed with hypophosphatemic rickets in Children's Hospital of Nanjing Medical University from January 2016 to June 2021 were included as the rickets group. Forty healthy children, matched for sex and age, who attended the Department of Child Healthcare of the hospital were included as the healthy control group. The serum level of FGF23 was compared between the two groups, and the correlations of the serum FGF23 level with clinical characteristics and laboratory test results were analyzed. The value of serum FGF23 in the diagnosis of hypophosphatemic rickets was assessed. RESULTS: The rickets group had a significantly higher serum level of FGF23 than the healthy control group (P<0.05). In the rickets group, the serum FGF23 level was positively correlated with the serum alkaline phosphatase level (rs=0.38, P<0.05) and was negatively correlated with maximum renal tubular phosphorus uptake/glomerular filtration rate (rs=-0.64, P<0.05), while it was not correlated with age, height Z-score, sex, and parathyroid hormone (P>0.05). Serum FGF23 had a sensitivity of 0.821, a specificity of 0.925, an optimal cut-off value of 55.77 pg/mL, and an area under the curve of 0.874 in the diagnosis of hypophosphatemic rickets (P<0.05). CONCLUSIONS: Serum FGF23 is of valuable in the diagnosis of hypophosphatemic rickets in children, which providing a theoretical basis for early diagnosis of this disease in clinical practice.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Raquitismo Hipofosfatémico , Niño , Humanos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico/diagnóstico
14.
Nephron ; 147(11): 685-692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37499630

RESUMEN

INTRODUCTION: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first 3 decades of life. Over 40 genes have been identified as causative for isolated human CAKUT. However, many genes remain unknown, and the prioritization of potential CAKUT candidate genes is challenging. To develop an independent approach to prioritize CAKUT candidate genes, we hypothesized that monogenic CAKUT genes are most likely co-expressed along a temporal axis during kidney development and that genes with coinciding high expression may represent strong novel CAKUT candidate genes. METHODS: We analyzed single-cell mRNA (sc-mRNA) transcriptomics data of human fetal kidney for temporal sc-mRNA co-expression of 40 known CAKUT genes. A maximum of high expression in consecutive timepoints of kidney development was found for four of the 40 genes (EYA1, SIX1, SIX2, and ITGA8) in nephron progenitor cells a, b, c, d (NPCa-d). We concluded that NPCa-d are relevant for CAKUT pathogenesis and intersected two lists of CAKUT candidate genes resulting from unbiased whole-exome sequencing (WES) with the 100 highest expressed genes in NPCa-d. RESULTS: Intersection of the 100 highest expressed genes in NPCa-d with WES-derived CAKUT candidate genes identified an overlap with the candidate genes KIF19, TRIM36, USP35, CHTF18, in each of which a biallelic variant was detected in different families with CAKUT. CONCLUSION: Sc-mRNA expression data of human fetal kidney can be utilized to prioritize WES-derived CAKUT candidate genes. KIF19, TRIM36, USP35, and CHTF18 may represent strong novel candidate genes for CAKUT.


Asunto(s)
Transcriptoma , Sistema Urinario , Humanos , Riñón/anomalías , Sistema Urinario/anomalías , ARN Mensajero , Proteínas de Homeodominio , Endopeptidasas
15.
BMC Genomics ; 24(1): 422, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501076

RESUMEN

OBJECTIVES: Microcephaly is caused by reduced brain volume and most usually associated with a variety of neurodevelopmental disorders (NDDs). To provide an overview of the diagnostic yield of whole exome sequencing (WES) and promote novel candidates in genetically unsolved families, we studied the clinical and genetic landscape of an unselected Chinese cohort of patients with microcephaly. METHODS: We performed WES in an unselected cohort of 103 NDDs patients with microcephaly as one of the features. Full evaluation of potential novel candidate genes was applied in genetically undiagnosed families. Functional validations of selected variants were conducted in cultured cells. To augment the discovery of novel candidates, we queried our genomic sequencing data repository for additional likely disease-causing variants in the identified candidate genes. RESULTS: In 65 families (63.1%), causative sequence variants (SVs) and clinically relevant copy number variants (CNVs) with a pathogenic or likely pathogenic (P/LP) level were identified. By incorporating coverage analysis to WES, a pathogenic or likely pathogenic CNV was detected in 15 families (16/103, 15.5%). In another eight families (8/103, 7.8%), we identified variants in newly reported gene (CCND2) and potential novel neurodevelopmental disorders /microcephaly candidate genes, which involved in cell cycle and division (PWP2, CCND2), CDC42/RAC signaling related actin cytoskeletal organization (DOCK9, RHOF), neurogenesis (ELAVL3, PPP1R9B, KCNH3) and transcription regulation (IRF2BP1). By looking into our data repository of 5066 families with NDDs, we identified additional two cases with variants in DOCK9 and PPP1R9B, respectively. CONCLUSION: Our results expand the morbid genome of monogenic neurodevelopmental disorders and support the adoption of WES as a first-tier test for individuals with microcephaly.


Asunto(s)
Microcefalia , Trastornos del Neurodesarrollo , Humanos , Secuenciación del Exoma , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Genómica
16.
Front Endocrinol (Lausanne) ; 14: 1188301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255971

RESUMEN

Monogenic diabetes gave us simplified models of complex molecular processes occurring within ß-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Recién Nacido , Humanos , Diabetes Mellitus Tipo 2/genética , Exocitosis , Glucosa
17.
Am J Med Genet A ; 191(8): 2083-2091, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37213061

RESUMEN

Neurogenic bladder is caused by disruption of neuronal pathways regulating bladder relaxation and contraction. In severe cases, neurogenic bladder can lead to vesicoureteral reflux, hydroureter, and chronic kidney disease. These complications overlap with manifestations of congenital anomalies of the kidney and urinary tract (CAKUT). To identify novel monogenic causes of neurogenic bladder, we applied exome sequencing (ES) to our cohort of families with CAKUT. By ES, we have identified a homozygous missense variant (p.Gln184Arg) in CHRM5 (cholinergic receptor, muscarinic, 5) in a patient with neurogenic bladder and secondary complications of CAKUT. CHRM5 codes for a seven transmembrane-spanning G-protein-coupled muscarinic acetylcholine receptor. CHRM5 is shown to be expressed in murine and human bladder walls and is reported to cause bladder overactivity in Chrm5 knockout mice. We investigated CHRM5 as a potential novel candidate gene for neurogenic bladder with secondary complications of CAKUT. CHRM5 is similar to the cholinergic bladder neuron receptor CHRNA3, which Mann et al. published as the first monogenic cause of neurogenic bladder. However, functional in vitro studies did not reveal evidence to strengthen the status as a candidate gene. Discovering additional families with CHRM5 variants could help to further assess the genes' candidate status.


Asunto(s)
Vejiga Urinaria Neurogénica , Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Humanos , Ratones , Animales , Vejiga Urinaria Neurogénica/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Riñón/anomalías , Ratones Noqueados
18.
Clin Genet ; 104(2): 226-229, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37005218

RESUMEN

Biallelic Wnt ligand secretion mediator (WLS gene) variants are associated with Zaki syndrome (OMIM: #619648). Here, we report the first case with Zaki syndrome in the Chinese population. Whole-exome gene sequencing (WES) identified compound heterozygous variants in the WLS gene (c.1427A > G; p.Tyr476Cys and c.415C > T, p.Arg139Cys; NM_001002292) in a 16-year-old boy presenting with facial dysmorphism, astigmatism, renal agenesis, and cryptorchidism. In vitro functional characterization showed that the two variants led to decreased WLS production and secretion of WNT3A, eventually affecting the WNT signal. We also found that the decreased mutant WLS expression can be rescued by 4-Phenylbutyric acid (4-PBA).


Asunto(s)
Receptores Acoplados a Proteínas G , Proteínas Wnt , Masculino , Humanos , Adolescente , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética
19.
Front Pediatr ; 11: 1111771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911040

RESUMEN

Biallelic TENM3 variants were recently reported to cause non-syndromic microphthalmia with coloboma-9 (MCOPCB9) and microphthalmia and/or coloboma with developmental delay (MCOPS15). To date, only eight syndromic and non-syndromic microphthalmia cases with recessive TENM3 variants have been reported. Herein, we report two unrelated new cases with biallelic variants in TENM3, widening the molecular and clinical spectrum. Regarding patient 1, WES revealed compound heterozygous variants in the TENM3 gene: c.3847_3855del; p.Leu1283_Ser1285del and c.3698_3699insA; p.Thr1233Thrfs*20 in the index patient, who was presenting with bilateral microphthalmia, congenital cataract, microcephaly, and global developmental delay. Regarding patient 2, compound missense heterozygous variants in the TENM3 gene were identified: c.941C > T; p.Ala314Val and c.6464T > C; p.Leu2155Pro in the 3-year-old boy, who presented with congenital esotropia, speech delay, and motor developmental delay. The clinical features of these two cases revealed high concordance with the previously reported cases, including microphthalmia and developmental delay. The presence of microcephaly in our patient potentially expands the neurologic phenotype associated with loss of function variants in TENM3, as microcephaly has not previously been described. Furthermore, we present evidence that missense variants in TENM3 are associated with similar, but milder, ocular features.

20.
J Clin Med ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835961

RESUMEN

(1) Background: Autosomal recessive polycystic kidney disease (ARPKD) is a rare ciliopathy characterized by progressively enlarged kidneys with fusiform dilatation of the collecting ducts. Loss-of-function mutations in the PKHD1 gene, which encodes fibrocystin/polyductin, cause ARPKD; however, an efficient treatment method and drug for ARPKD have yet to be found. Antisense oligonucleotides (ASOs) are short special oligonucleotides which function to regulate gene expression and alter mRNA splicing. Several ASOs have been approved by the FDA for the treatment of genetic disorders, and many are progressing at present. We designed ASOs to verify whether ASOs mediate the correction of splicing further to treat ARPKD arising from splicing defects and explored them as a potential treatment option. (2) Methods: We screened 38 children with polycystic kidney disease for gene detection using whole-exome sequencing (WES) and targeted next-generation sequencing. Their clinical information was investigated and followed up. The PKHD1 variants were summarized and analyzed, and association analysis was carried out to analyze the relationship between genotype and phenotype. Various bioinformatics tools were used to predict pathogenicity. Hybrid minigene analysis was performed as part of the functional splicing analysis. Moreover, the de novo protein synthesis inhibitor cycloheximide was selected to verify the degraded pathway of abnormal pre-mRNAs. ASOs were designed to rescue aberrant splicing, and this was verified. (3) Results: Of the 11 patients with PKHD1 variants, all of them exhibited variable levels of complications of the liver and kidneys. We found that patients with truncating variants and variants in certain regions had a more severe phenotype. Two splicing variants of the PKHD1 genotypes were studied via the hybrid minigene assay: variants c.2141-3T>C and c.11174+5G>A. These cause aberrant splicing, and their strong pathogenicity was confirmed. We demonstrated that the abnormal pre-mRNAs produced from the variants escaped from the NMD pathway with the use of the de novo protein synthesis inhibitor cycloheximide. Moreover, we found that the splicing defects were rescued by using ASOs, which efficiently induced the exclusion of pseudoexons. (4) Conclusion: Patients with truncating variants and variants in certain regions had a more severe phenotype. ASOs are a potential drug for treating ARPKD patients harboring splicing mutations of the PKHD1 gene by correcting the splicing defects and increasing the expression of the normal PKHD1 gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA