RESUMEN
Pancreatic cancer (PC) is one of the most malignant types of cancer, and is characterized by early metastasis, limited response to chemotherapeutics, and poor prognosis. Therefore, there is an urgent need to explore new therapeutic strategies for PC treatment. Human rhomboid-like 2 (RHBDL2) is differentially expressed in cervical and breast cancer. However, the correlation between RHBDL2 and PC remains unclear. We found that RHBDL2 is highly expressed in human PC cells and tissues and is significantly associated with distant metastasis and poor survival of patients with PC. Gain- and loss-of-function assays indicated that RHBDL2 could accelerate PC cell proliferation and mobility in vitro and in vivo. The RNA-Seq results suggest that RHBDL2 may be involved in the activation of Notch signaling pathway. IMR-1 could restore the proliferation and metastatic capacity of PC cells mediated by RHBDL2. RHBDL2 interacted with and cleaved Notch1, resulting in the release of N1ICD. RHBDL2 decreased the ubiquitination level of N1ICD and collaborated with Ovarian tumor domain-containing 7B (OTUD7B) to stabilize N1ICD via the ubiquitin-proteasome pathway. RHBDL2 facilitated PC cell proliferation and mobility by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Thus, targeting this novel pathway may be a potential therapeutic strategy for PC.
Asunto(s)
Neoplasias Pancreáticas , Transducción de Señal , Humanos , Proliferación Celular , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Endopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Neoplasias PancreáticasRESUMEN
BACKGROUND: MICAL1 is involved in the malignant processes of several types of cancer; however, the role of MICAL1 in pancreatic cancer (PC) has not been well-characterized. This study aimed to investigate the expression and function of MICAL1 in PC. METHODS: RT-qPCR and immunohistochemistry were used to detect MICAL1 expression in PC and adjacent nontumor tissues. Cell Counting Kit-8, EdU, clone formation, wound healing, and Transwell assays as well as animal models were used to investigate the effects of overexpression or inhibition of MICAL1 expression on the proliferation, invasion, and metastasis of PC cells. RNA-seq was used to explore the main pathway underlying the functions of MICAL1. Proteomics, mass spectrometry, and co-immunoprecipitation assays were used to investigate the interaction of proteins with MICAL1. Rescue experiments were conducted to validate these findings. RESULTS: Both MICAL1 mRNA and protein levels were upregulated in PC tissues compared with matched adjacent nontumor tissues. The expression level of MICAL1 was associated with the proliferative and metastatic status of PC. Repression of MICAL1 significantly inhibited PC cell growth, migration, and invasion in vitro and in vivo. RNA sequencing analysis indicated that MICAL1 was closely correlated with the WNT pathway. Overexpression of MICAL1 (1) promoted the phosphorylation of TBC1D1 at the Ser660 site, (2) facilitated the distribution of FZD7 on the cytomembrane, (3) inhibited the degradation of FZD7 in the lysosome, and (4) activated the WNT pathway. CONCLUSIONS: MICAL1 was upregulated in PC and involved in stimulating the progression of PC cells by activating the WNT/ß-catenin signaling pathway. Therefore, MICAL1 is a potential therapeutic target for PC.
Asunto(s)
Neoplasias Pancreáticas , Vía de Señalización Wnt , Animales , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Proliferación Celular/genética , Neoplasias Pancreáticas/patología , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias PancreáticasRESUMEN
OBJECTIVE: Pancreatic adenocarcinoma (PAAD) is a leading cause of cancer-related mortality in adults. Syndecan-4 (SDC4) is involved in cancer pathogenesis. Therefore, this study aimed to explore the expression and clinical significance of SDC4 in PAAD. METHODS: Differentially expressed genes (DEGs) between PAAD and normal pancreas were screened from the GTEx and TCGA databases, and the correlationship between the DEGs and prognosis were analyzed. The prognostic value of the screened SDC4, SERPINE1, and SLC2A1 was evaluated using the Kaplan-Meier curve and SDC4 was subsequently selected as the better candidate. Also, SDC4 expression was analyzed in PAAD tissues, the other risk factors affecting postoperative survival were analyzed using Cox regression analysis, and SDC4-mediated pathways enrichment was identified by GSVA and GSEA. SDC4 expression in PAAD tissues and adjacent normal tissues of selected PAAD patients was detected by RT-qPCR and immunohistochemistry. The correlation between SDC4 and clinical features was evaluated by the χ2 test. RESULTS: SDC4 was highly expressed in PAAD tissues. Elevated SDC4 was correlated with reduced overall survival. SDC4 enrichment pathways included spliceosome function, proteasome activity, pentose phosphate pathway, base excision repair, mismatch repair, DNA replication, oxidative phosphorylation, mitotic spindle formation, epithelial-mesenchymal transition, and G2M checkpoints. SDC4 was elevated in PAAD tissues of PAAD patients compared with adjacent normal tissues. High SDC4 expression was related to metastatic differentiation, TNM stage, lymphatic metastasis, and lower 3-year survival rate. SDC4 was an independent risk factor affecting postoperative survival. CONCLUSION: SDC4 was highly expressed in PAAD and was related to clinicopathological features and poor prognosis, which might be an important index for PAAD early diagnosis and prognosis.
Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/patología , Pronóstico , Complejo de la Endopetidasa Proteasomal/genética , Sindecano-4/genética , Sindecano-4/metabolismo , Neoplasias PancreáticasRESUMEN
Background: Hepatocellular carcinoma (HCC) is recognized as the fourth in incidence and the third in mortality worldwide. The onset of HCC is insidious and often asymptomatic at the early stage. HCC is more prone to metastasis, recurrence, and drug resistance than other solid tumors owing to its feature of high heterogeneity. Therefore, what particularly important is to search for effective molecular markers in the occurrence and progression of HCC. Aim: To probe into the therapeutic potential of circACTG1 (hsa_circ_0046144) in HCC cell migration and invasion, providing a new insight and molecular target to diagnose and cure HCC patients. Methods: The circACTG1 expression in collected HCC cells was determined by quantitative polymerase chain reaction (qPCR). Assessment for circACTG1 diagnosing capability was analyzed by receiver operating characteristic (ROC) curves. Transwell assay, wound healing assay, and cell counting kit-8 assay were used for monitoring the effect of circACTG1 in HCC cell invasion, migration, and proliferation, respectively; qPCR, luciferase reporter assay, databases, and Western blot analysis were used for identifying the modulation mechanisms among circACTG1, miRNA-940, and RIF1. What is more, our study verified AKT-mTOR signaling after miR-940 mimic treatment or circACTG1 knockdown. Results: circACTG1 was overexpressed in HCC cells and tissues. Knockdown of circACTG1 restrained 97H and Huh7 cell migration and invasion. Significantly, circACTG1 was discovered to serve as a miR-940 sponge. miR-940 activation rebated the circACTG1 level, and conversely, miR-940 inhibition boosted the circACTG1 level. However, this effect or relationship was not seen after circACTG1 mutation. Furtherly, miR-940-downregulated expression was also found in HCC patients, and importantly, miR-940 inhibition reversed circACTG1 expression in 97H cells with circACTG1 knockdown. Moreover, the expression of RIF1 was significantly reduced after inhibiting circACTG1 or overexpressing miR-940 but rescued when both circACTG1 and miR-940 were inhibited. Finally, circACTG1 and miR-940 played significant roles of regulating AKT-mTOR signaling. Conclusion: circACTG1 expression remarkably ascended in HCC, which is of certain diagnostic value. Moreover, circACTG1 potentially regulates HCC cell proliferation, invasion, and migration via miR-940/RIF1/AKT/mTOR pathway.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Proteínas Proto-Oncogénicas c-akt , ARN Circular , Serina-Treonina Quinasas TOR , Proteínas de Unión a Telómeros , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismoRESUMEN
BACKGROUND: The traditional nursing undergraduate curriculum is deeply influenced by the medical curriculum, and there are problems such as uneven distribution of theoretical and practical class hours, and a high proportion of subject-related knowledge points. The lack of nursing characteristics is not conducive to improving the competency of nursing students. After two rounds of Delphi consultation, the opinions of the expert group tended to be concentrated, and finally a comprehensive curriculum system for undergraduate nursing was constructed according to the future development trend of nursing in China. METHODS: The research is carried out in three stages: (I) the literature on comprehensive nursing undergraduate comprehensive curriculum construction at home and abroad in the past 5 years is reviewed to understand the current situation of domestic and foreign nursing undergraduate comprehensive curriculum construction; (II) conduct semi-structured interviews with nursing education experts and nursing professional teachers to preliminarily determine the indicators of the comprehensive curriculum system for nursing undergraduate majors based on competency; (III) experts who are proficient in nursing undergraduate education knowledge are invited to conduct two rounds of modified Delphi surveys, and finally complete the construction of the curriculum system of this research. RESULTS: On the basis of interviews with experts and teachers, 5 course groups (first-level indicators) and 16 professional comprehensive courses (second-level indicators) were finally constructed after two rounds of expert consultation. The coefficient of variation of index was 0.000-0.112. The effective recovery rate of the two rounds of expert consultation questionnaires was 100%, the expert authority coefficients was 0.940 and 0.961, the expert opinion coordination coefficient was 0.263 and 0.275, P<0.001. The highest weight of the first-level indicators in this study is the professional core course group (0.333). Among the secondary indicators, nursing humanistic cultivation and professionalism (0.750) and nursing education theory and practice (0.528) accounted for a relatively high proportion. CONCLUSIONS: Correspondence experts in this study are highly motivated, coordinated, and authoritative, and the indicators constructed are scientific and reliable. This study is expected to provide a curriculum framework for the construction of a comprehensive curriculum system for undergraduate nursing in China.
Asunto(s)
Bachillerato en Enfermería , Estudiantes de Enfermería , China , Curriculum , Técnica Delphi , HumanosRESUMEN
Accumulating evidence has demonstrated the essential role of long noncoding RNAs (lncRNAs) in various types of human cancer, including pancreatic cancer (PC). However, the functions and regulatory mechanisms of nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) that are responsible for its role in the malignant progression of PC cells remains to be investigated. In this study, the biological effects of NR2F1-AS1 and NR2F1 in PC were investigated by in vitro and in vivo experiments. The mechanisms of NR2F1-AS1 were monitored by bioinformatic predictive analysis and confirmatory experiments. Our results indicated that NR2F1-AS1 was overexpressed and positively correlated with poor survival in PC. Depletion of NR2F1-AS1 restrained PC cell proliferation, migration, invasion, and suppressed xenograft tumor growth and metastasis in vitro and in vivo. Mechanistic experiments suggested that NR2F1-AS1 positively regulated the neighboring NR2F1 gene, which subsequently activated AKT/mTOR signaling, resulting in the upregulation of hypoxia-inducible factor-1α (HIF-1α). Further investigations elucidated that NR2F1-AS1 expression was transcriptionally regulated by HIF-1α under hypoxia. These findings demonstrated that hypoxia-induced NR2F1-AS1 expression directly increased NR2F1 levels to promote PC cell proliferation, migration, and invasion by activating AKT/mTOR signaling. Together, these findings suggest that NR2F1-AS1 could be a prospective therapeutic target for PC.
Asunto(s)
MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Factor de Transcripción COUP I/genética , Factor de Transcripción COUP I/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , MicroARNs/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias PancreáticasRESUMEN
BACKGROUND: Prodigiosin (PG), a natural red pigment produced by numerous bacterial species, has been a eye-catching research point in recent years for its anticancer activity. However, the role of PG in the cancer biology of cholangiocarcinoma (CCA) remains vague. METHODS: The proliferation of CCA cells was detected by Cell Counting Kit-8(CCK-8), Colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell apoptosis was evaluated by flow cytometry assay and western blot assay. The effects of PG or SNAREs on cell autophagy were measured by autophagy flux assay and western blot assay. Xenograft mouse models were used to assess the role of PG in CCA cells in vivo. RESULTS: PG could inhibit the proliferation and viability of CCA cells in a concentration- and time-dependent manner via suppressing the late stage of autophagy. Mechanistically, PG inhibits the fusion of autophagosomes and lysosomes by blocking STX17 and SNAP29, components of soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs)complex. When STX17 and SNAP29 were overexpressed, the inhibitory effect of PG on CCA cells autophagy was relieved. In addition, PG showed obvious inhibitory effects on cancer cell viability but no toxic effects on organs in xenotransplantation models. CONCLUSION: Taken together, our results demonstrated that PG inhibits CCA cell proliferation via suppressing SNAREs-dependent autophagy, implying that PG could be a potential chemotherapy drug for advanced CCA.