Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Eur J Cancer Prev ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39229969

RESUMEN

BACKGROUND: Research studies on gastric cancer have not investigated the combined impact of body composition, age, and tumor staging on gastric cancer prognosis. To address this gap, we used machine learning methods to develop reliable prediction models for gastric cancer. METHODS: This study included 1,132 gastric cancer patients, with preoperative body composition and clinical parameters recorded, analyzed using Cox regression and machine learning models. RESULTS: The multivariate analysis revealed that several factors were associated with recurrence-free survival (RFS) and overall survival (OS) in gastric cancer. These factors included age (≥65 years), tumor-node-metastasis (TNM) staging, low muscle attenuation (MA), low skeletal muscle index (SMI), and low visceral to subcutaneous adipose tissue area ratios (VSR). The decision tree analysis for RFS identified six subgroups, with the TNM staging I, II combined with high MA subgroup showing the most favorable prognosis and the TNM staging III combined with low MA subgroup exhibiting the poorest prognosis. For OS, the decision tree analysis identified seven subgroups, with the subgroup featuring high MA combined with TNM staging I, II showing the best prognosis and the subgroup with low MA, TNM staging II, III, low SMI, and age ≥65 years associated with the worst prognosis. CONCLUSION: Cox regression identified key factors associated with gastric cancer prognosis, and decision tree analysis determined prognoses across different risk factor subgroups. Our study highlights that the combined use of these methods can enhance intervention planning and clinical decision-making in gastric cancer.

2.
Nanomaterials (Basel) ; 14(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39269073

RESUMEN

In recent years, the development of environmentally friendly, lead-free ferroelectric films with prominent electrostrictive effects have been a key area of focus due to their potential applications in micro-actuators, sensors, and transducers for advanced microelectromechanical systems (MEMS). This work investigated the enhanced electrostrictive effect in lead-free sodium bismuth titanate-based relaxor ferroelectric films. The films, composed of (Bi0.5Na0.5)0.8-xBaxSr0.2TiO3 (BNBST, x = 0.02, 0.06, and 0.11), with thickness around 1 µm, were prepared using a sol-gel method on Pt/TiO2/SiO2/Si substrates. By varying the Ba2+ content, the crystal structure, morphology, and electrical properties, including dielectric, ferroelectric, strain, and electromechanical performance, were investigated. The films exhibited a single pseudocubic structure without preferred orientation. A remarkable strain response (S > 0.24%) was obtained in the films (x = 0.02, 0.06) with the coexistence of nonergodic and ergodic relaxor phases. Further, in the x = 0.11 thick films with an ergodic relaxor state, an ultrahigh electrostrictive coefficient Q of 0.32 m4/C2 was achieved. These findings highlight the potential of BNBST films as high-performance, environmentally friendly electrostrictive films for advanced microelectromechanical systems (MEMS) and electronic devices.

3.
Ibrain ; 10(3): 290-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346790

RESUMEN

Cardiopulmonary bypass (CPB) is often used in cardiothoracic surgery because its nonphysiological state causes pathophysiological changes in the body, causing multiorgan and multitissue damage to varying degrees. Postoperative cognitive dysfunction (POCD) is a common central nervous system complication after cardiac surgery. The etiology and mechanism of POCD are not clear. Neuroinflammation, brain mitochondrial dysfunction, cerebral embolism, ischemia, hypoxia, and other factors are related to the pathogenesis of POCD. There is a close relationship between CPB and POCD, as CPB can cause inflammation, hypoxia and reperfusion injury, and microemboli formation, all of which can trigger POCD. POCD increases medical costs, seriously affects patients' quality of life, and increases mortality. Currently, there is a lack of effective treatment methods for POCD. Commonly used methods include preoperative health management, reducing inflammation response during surgery, preventing microemboli formation, and implementing individualized rehabilitation programs after surgery. Strengthening preventive measures can minimize the occurrence of POCD and its adverse effects.

4.
Langmuir ; 40(39): 20485-20494, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39302021

RESUMEN

Prussian white (PW) is considered a promising cathode material for sodium-ion batteries. However, challenges, such as lattice defects and poor conductivity limit its application. Herein, the composite materials of manganese-iron based Prussian white and reduced graphene oxide (PW/rGO) were synthesized via a one-step in situ synthesis method with sodium citrate, which was employed both as a chelating agent to control the reaction rate during the coprecipitation process of PW synthesis and as a reducing agent for GO. The low precipitation speed helps minimize lattice defects, while rGO enhances electrical conductivity. Furthermore, the one-step in situ synthesis method is simpler and more efficient than the traditional synthesis method. Compared with pure PW, the PW/rGO composites exhibit significantly improved electrochemical properties. Cycling performance tests indicated that the PW/rGO-10 sample exhibited the highest initial discharge capacity and the best cyclic stability. The PW/rGO-10 has an initial discharge capacity of 128 mAh g-1 at 0.1 C (1 C = 170 mA g-1), and retains 49.53% capacity retention after 100 cycles, while the PW only delivers 112 mAh g-1 with a capacity retention of 17.79% after 100 cycles. Moreover, PW/rGO-10 also shows better rate performance and higher sodium ion diffusion coefficient (DNa+) than the PW sample. Therefore, the incorporation of rGO not only enhances the electrical conductivity but also promotes the rapid diffusion of sodium ions, effectively improving the electrochemical performance of the composite as a cathode material for sodium-ion batteries.

5.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(4): 430-433, 2024 Jul 30.
Artículo en Chino | MEDLINE | ID: mdl-39155258

RESUMEN

Objective: To investigate the impact of different infusion media on the flow rate of infusion pumps. Methods: Ten infusion pumps were randomly selected and tested for infusion rates using deionized water, saline solution, glucose solution, and parenteral nutrition solution. The infusion flow rate was set at 30 mL/h, and the testing methodology conformed to the standards for the calibration and quality control of syringe pumps and infusion pumps. Results: For infusion set A, the infusion rate was unaffected by the infusion media, remaining within the acceptable quality control standards. For infusion set B, when infused with deionized water, saline solution, and glucose solution, the infusion errors were within the quality control standards. However, when using parenteral nutrition solution as the infusion medium, the infusion error exceeded the acceptable quality control standards. Conclusion: Both the infusion set and the infusion medium can affect the flow rate of infusion pumps. It is crucial to calibrate the flow rate according to the specific infusion medium to reduce medical risks associated with infusion pumps during clinical use.


Asunto(s)
Bombas de Infusión , Glucosa/administración & dosificación , Solución Salina/administración & dosificación , Control de Calidad , Calibración , Soluciones para Nutrición Parenteral , Agua
6.
OMICS ; 28(9): 461-469, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149810

RESUMEN

The study of longevity and its determinants has been revitalized with the rise of microbiome scholarship. The gut microbiota have been established to play essential protective, metabolic, and physiological roles in human health and disease. The gut dysbiosis has been identified as an important factor contributing to the development of multiple diseases. Accordingly, it is reasonable to hypothesize that the gut microbiota of long-living individuals have healthy antiaging-associated gut microbes, which, by extension, might provide specific molecular targets for antiaging treatments and interventions. In the present study, we compared the gut microbiota of Chinese individuals in two different age groups, long-living adults (aged over 90 years) and elderly adults (aged 65-74 years) who were free of major diseases. We found significantly lower relative abundances of bacteria in the genera Sutterella and Megamonas in the long-living individuals. Furthermore, we established that while biological processes such as autophagy (GO:0006914) and telomere maintenance through semiconservative replication (GO:0032201) were enhanced in the long-living group, response to lipopolysaccharide (GO:0032496), nicotinamide adenine dinucleotide oxidation (GO:0006116), and S-adenosyl methionine metabolism (GO:0046500) were weakened. Moreover, the two groups were found to differ with respect to amino acid metabolism. We suggest that these compositional and functional differences in the gut microbiota may potentially be associated with mechanisms that contribute to determining longevity or aging.


Asunto(s)
Microbioma Gastrointestinal , Longevidad , Humanos , Anciano , Microbioma Gastrointestinal/fisiología , Anciano de 80 o más Años , Masculino , Femenino , China , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Pueblos del Este de Asia
7.
Aging Male ; 27(1): 2388529, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39135319

RESUMEN

OBJECTIVE: Prostate hyperplasia and cancer are more prevalent in middle-aged and elderly men. Previous studies have linked both disorders to androgen receptors. Herein, efforts were made to identify factors associated with prostate cancer in patients ≥60 years, aiming to enhance their health management. METHODS: An analytical framework was established utilizing the "Prostate Cancer Early Warning Dataset" from the National Clinical Medical Science Data Center. Variables selection was conducted through LASSO regression, followed by multifactorial logistic stepwise regression to construct a predictive model. RESULTS: A total of 1,502 patients with BPH and 294 with combined PCa were hereby included. Multivariate regression delineated several independent predictors of PCa coexistence, including age (OR [95% CI]: 1.06 [1.04-1.09], p < 0.001), fPSA/tPSA ratio (OR [95% CI]: 0.01 [0.002-0.05], p < 0.001), serum inorganic phosphorus (OR [95% CI]: 5.85 [2.61-13.15], p < 0.001), globulin levels (OR [95% CI]: 1.06 [1.02-1.11], p = 0.005), serum potassium (OR [95% CI]: 0.58 [0.40-0.86], p = 0.006), low-density lipoprotein (LDL) cholesterol (OR [95% CI]: 1.28 [1.06-1.54], p = 0.009), among others. CONCLUSION: The analysis revealed connections between PCa occurrence in men aged over 60 and BPH, along with specific serum biomarkers such as inorganic phosphorus, globulin, LDL cholesterol, lower fPSA/tPSA ratios and serum potassium.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Humanos , Masculino , Hiperplasia Prostática/sangre , Hiperplasia Prostática/epidemiología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/epidemiología , Anciano , Persona de Mediana Edad , Factores de Riesgo , Antígeno Prostático Específico/sangre , Factores de Edad , Anciano de 80 o más Años , Modelos Logísticos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124759, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955068

RESUMEN

Acetaminophen, also known as paracetamol (APAP), is a commonly used over-the-counter medication that is often used to treat headaches, toothaches, joint pain, muscle pain, and to lower body temperature. However, overdose can lead to liver damage, gastrointestinal distress, kidney damage, and cardiovascular disease. Therefore, it is very important to establish a method to quickly detect APAP. A novel "ON-OFF-ON" colorimetric and fluorescence dual-signal sensing system was constructed for the quantitative detection of APAP based on 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrin (TSPP) dual-signal probe. The absorbance and fluorescence intensity of TSPP respectively were quenched when Fe3+ was introduced into TSPP solution. At this point, the color of the corresponding solution changed from red to green. The absorbance and fluorescence intensity of TSPP respectively were restored when APAP was added to the TSPP-Fe3+ system. At this time, the color of the solution changed from green to colorless. Therefore, an "ON-OFF-ON" dual-signal sensing study of APAP were constructed using TSPP as the colorimetric and fluorescent probe. The proposed colorimetric sensing system had a wide linear range in the 13.12 mM âˆ¼ 23.20 mM with 0.11 mM of limit of detection (LOD, S/N = 3). And the proposed fluorescence sensing system had a wide linear range in the 3.45 mM âˆ¼ 12.50 mM and 41.67 mM âˆ¼ 65.22 mM with 0.83 mM of limit of detection (LOD, S/N = 3). The dual-signal sensing system were applied to the APAP detection of real samples.


Asunto(s)
Acetaminofén , Colorimetría , Porfirinas , Espectrometría de Fluorescencia , Colorimetría/métodos , Espectrometría de Fluorescencia/métodos , Acetaminofén/análisis , Porfirinas/química , Límite de Detección , Hierro/análisis , Colorantes Fluorescentes/química , Humanos
9.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38833322

RESUMEN

Recent advances in tumor molecular subtyping have revolutionized precision oncology, offering novel avenues for patient-specific treatment strategies. However, a comprehensive and independent comparison of these subtyping methodologies remains unexplored. This study introduces 'Themis' (Tumor HEterogeneity analysis on Molecular subtypIng System), an evaluation platform that encapsulates a few representative tumor molecular subtyping methods, including Stemness, Anoikis, Metabolism, and pathway-based classifications, utilizing 38 test datasets curated from The Cancer Genome Atlas (TCGA) and significant studies. Our self-designed quantitative analysis uncovers the relative strengths, limitations, and applicability of each method in different clinical contexts. Crucially, Themis serves as a vital tool in identifying the most appropriate subtyping methods for specific clinical scenarios. It also guides fine-tuning existing subtyping methods to achieve more accurate phenotype-associated results. To demonstrate the practical utility, we apply Themis to a breast cancer dataset, showcasing its efficacy in selecting the most suitable subtyping methods for personalized medicine in various clinical scenarios. This study bridges a crucial gap in cancer research and lays a foundation for future advancements in individualized cancer therapy and patient management.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Neoplasias/genética , Neoplasias/clasificación , Neoplasias/terapia , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Oncología Médica/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/terapia , Femenino
10.
Front Pharmacol ; 15: 1403767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855748

RESUMEN

Background: Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods: The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results: A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion: This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.

11.
Adv Colloid Interface Sci ; 331: 103241, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909547

RESUMEN

Solid Oxide Fuel Cells (SOFCs) have proven to be highly efficient and one of the cleanest electrochemical energy conversion devices. However, the commercialization of this technology is hampered by issues related to electrode performance degradation. This article provides a comprehensive review of the various degradation mechanisms that affect the performance and long-term stability of the SOFC anode caused by the interplay of physical, chemical, and electrochemical processes. In SOFCs, the most used anode material is nickel-yttria stabilized zirconia (Ni-YSZ) due to its advantages of high electronic conductivity and high catalytic activity for H2 fuel. However, various factors affecting the long-term stability of the Ni-YSZ anode, such as redox cycling, carbon coking, sulfur poisoning, and the reduction of the triple phase boundary length due to Ni particle coarsening, are thoroughly investigated. In response, the article summarizes the state-of-the-art diagnostic tools and mitigation strategies aimed at improving the long-term stability of the Ni-YSZ anode.

12.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 312-314, 2024 May 30.
Artículo en Chino | MEDLINE | ID: mdl-38863099

RESUMEN

Objective: To select high-quality and cost-effective dural (spinal) membrane repair materials, in order to reduce the cost of consumables procurement, save medical insurance funds, and optimize hospital operation and management. Methods: Taking the BS06B disease group (spinal cord and spinal canal surgery without extremely severe or severe complications and comorbidities, mainly diagnosed as congenital tethered cord syndrome) as an example, a retrospective analysis was conducted on the relevant data of surgical treatment for congenital tethered cord syndrome conducted in our hospital from January 2021 to June 2023. Safety and efficacy indicators in clinical application (incidence of postoperative epidural hemorrhage, incidence of postoperative purulent cerebrospinal meningitis, incidence of cerebrospinal fluid leakage, surgical duration, and postoperative hospital stay) were compared. Results: There was no difference in safety and effectiveness between different brands of dura mater repair materials. Conclusion: For the repair of small incisions in dura mater surgery, high-quality and cost-effective dura mater repair materials can be selected to reduce hospital costs and control expenses for the disease group.


Asunto(s)
Duramadre , Duramadre/cirugía , Estudios Retrospectivos , Humanos , Defectos del Tubo Neural/cirugía , Médula Espinal/cirugía
13.
BMC Complement Med Ther ; 24(1): 239, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890651

RESUMEN

BACKGROUND: Insomnia is common in college students, but its impact on health and wellbeing is often neglected. Enhancing sleep quality through targeted interventions could improve overall health and reduce the risk of consequent co-morbidities and mental health problems. Qigong exercises have been shown to significantly improve sleep quality and relieve insomnia. Three-circle Post Standing (TCPS) can help integrate body, breath, and mind, a fundamental principle of Qigong that promotes holistic wellbeing. In this clinical trial, we aim to (1) evaluate the feasibility, safety, and therapeutic efficacy of administering TCPS to improve sleep quality and quality of life in college students with insomnia; (2) explore the neurophysiological mechanisms underlying the mind adjustments mediated by TCPS in insomnia; (3) investigate body and breath pathophysiology mediated by TCPS in insomnia; and (4) assess the long-term efficacy of TCPS in terms of sleep quality and quality of life. METHODS: This will be a prospective, parallel, four-arm, double-blind randomized controlled trial to investigate the effects and underlying mechanisms of TCPS on college students with insomnia. One hundred college students meeting diagnostic criteria for insomnia will be randomly assigned to receive either 14 weeks of standardized TCPS training (two weeks of centralized training followed by 12 weeks of supervised training) or sham-control Post Standing training. Efficacy outcomes including sleep quality, quality of life, neurophysiological assessments, plantar pressure, biomechanical balance, and physical measures will be collected at baseline, eight weeks (mid-point of supervised training), and 14 weeks (end of supervised training). Sleep quality and quality of life will also be evaluated during the four- and eight-week follow-up. DISCUSSION: This trial will be an important milestone in the development of new therapeutic approaches for insomnia and should be easily implementable by college students with insomnia. The neuro- and pathophysiological assessments will provide new insights into the mechanisms underlying TCPS. CLINICAL TRIAL REGISTRATION: This trial has been registered in the China Clinical Trials Registry (registration number: ChiCTR2400080763).


Asunto(s)
Qigong , Trastornos del Inicio y del Mantenimiento del Sueño , Estudiantes , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Método Doble Ciego , Estudios Prospectivos , Qigong/métodos , Calidad de Vida , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Calidad del Sueño , Universidades , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Nephron ; 148(9): 609-617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38852577

RESUMEN

BACKGROUND: Thrombotic microangiopathy (TMA) is an important risk factor for the prognosis of lupus nephritis (LN). Patients with LN complicated with TMA tend to be critically ill with high mortality and poor prognosis. In the present study, we retrospectively analyzed the clinical manifestations, laboratory results, renal pathological manifestations, and prognosis of children with LN-TMA and analyzed the risk factors for end-stage renal disease (ESRD) in children with LN-TMA. METHODS: Seventy-four patients with LN and renal TMA (rTMA) were selected and compared to 128 LN controls without TMA (1:2 ratio) matched according to demographics, pathological type and treatments. RESULTS: The mean values of systolic blood pressure, diastolic blood pressure (DBP), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), urinary protein quantitation (PRO), urine red blood cells, N-acetyl-ß-D-glucosidase (NAG), retinol-binding protein, systemic lupus erythematosus disease activity score (SLEDAI), and activity index (AI) scores in the TMA group were all higher than those in the non-TMA group (p < 0.05 and p < 0.01). The mean values of complement C3, hemoglobin, platelets, estimated glomerular filtration rate, and chronic index (CI) score in the TMA group were all lower than those in the non-TMA group (p < 0.05 and p < 0.01). The number of cases of glomerular crescent, fibrous crescent, endocapillary proliferation, tubular atrophy, interstitial fibrosis, C3 and C1q deposition in the TMA group was higher than that in the non-TMA group (p < 0.05 and p < 0.01). The 3-year and 5-year renal survival rates in the TMA group (88.93% vs. 97.00%, p < 0.05) and TMA group (61.41% vs. 82.31%, p < 0.05) were significantly lower than those in the non-TMA group. Multivariate Cox regression analysis showed that serum creatinine before treatment (≥110 µmol/L), TMA and interstitial fibrosis were independent risk factors for the development of ESRD in LN children. CONCLUSION: The general condition of children with TMA is critical, and the prognosis is poor. Early detection, early treatment and the development of new treatments are key to improving LN-TMA outcomes in children.


Asunto(s)
Nefritis Lúpica , Microangiopatías Trombóticas , Humanos , Nefritis Lúpica/complicaciones , Nefritis Lúpica/patología , Microangiopatías Trombóticas/etiología , Microangiopatías Trombóticas/complicaciones , Microangiopatías Trombóticas/patología , Femenino , Masculino , Niño , Factores de Riesgo , Adolescente , Estudios Retrospectivos , Fallo Renal Crónico/etiología , Fallo Renal Crónico/patología , Fallo Renal Crónico/complicaciones , Pronóstico , Complemento C3 , Preescolar
15.
Langmuir ; 40(21): 11251-11262, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748644

RESUMEN

Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 µmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2.

16.
Langmuir ; 40(19): 10107-10114, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691012

RESUMEN

Boron nitride nanosheets (BNNS) are expected to be ideal fillers because of their high thermal conductivity and excellent electrical insulation. However, it is still an open challenge to produce BNNS on a large scale using ecofriendly solvents. Here, first, we demonstrate an effective liquid exfoliation method for producing BNNS via utilizing deep eutectic solvents (DES) composed of D,L-menthol and various acids with the assistance of ultrasonication. The results show that the BNNSs with sizes of 1-2 µm in width and 6-8 nm in thickness were successfully exfoliated with a DES formulation of D,L-menthol and decanoic acid. Second, the obtained BNNSs were used for fabricating 1,6-hexanediol diacrylate@polydopamine functionalized BNNS (HDDA@BNNSs-PDA) core-shell microspheres via a Pickering emulsion method. Furthermore, these microspheres were incorporated into a polyvinylidene fluoride (PVDF) matrix to construct 3D thermally conductive networks, leading to a substantial enhancement in the thermal conductivity of the resulting composites. Impressively, the composites with only 25 wt % of BNNS loading reach a high thermal conductivity of 3.20 W/m K, which is a 1500% increase over the pure polymer matrix. This work not only provides a significant way for producing BNNSs ecofriendly but also demonstrates a tactic for constructing 3D thermally conductive networks.

17.
J Neural Eng ; 21(3)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701773

RESUMEN

Objective. Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting.Approach. To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets.Main results. In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios.Significance. FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.


Asunto(s)
Electroencefalografía , Emociones , Humanos , Electroencefalografía/métodos , Emociones/fisiología , Aprendizaje Profundo , Atención/fisiología , Redes Neurales de la Computación , Masculino , Femenino , Adulto
18.
BMC Geriatr ; 24(1): 466, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807058

RESUMEN

BACKGROUND: With the aging population, the number of individuals with dementia in China is increasing rapidly. This community-based study aimed to investigate the prevalence and risk factors for dementia and mild cognitive impairment (MCI) among older adults in China. METHODS: In this study, 20,070 individuals aged ≥ 65 were recruited between January 1, 2022, and February 1, 2023, from ten communities in Xiamen City, China. We collected data on age, sex, level of education, and medical history, as well as global cognition and functional status. The prevalence of dementia and MCI was examined, and the risk factors for different groups were assessed. RESULTS: The overall prevalence of dementia and MCI was approximately 5.4% (95% confidence interval [CI], 5.1-5.7) and 7.7% (95% CI, 7.4-8.1), respectively. The results also indicated that dementia and MCI share similar risk factors, including older age, female sex, hypertension, and diabetes mellitus. Compared with individuals with no formal education, those with > 6 years of education had an odds ratio for MCI of 1.83 (95% CI, 1.49-2.25). We also found that only 5.5% of the positive participants chose to be referred to the hospital for further diagnosis and treatment during follow-up visits. CONCLUSIONS: This study estimated the prevalence and risk factors for dementia and MCI among individuals aged ≥ 65 years in Southeast China. These findings are crucial for preventing and managing dementia and MCI in China.


Asunto(s)
Disfunción Cognitiva , Demencia , Humanos , Masculino , Femenino , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/diagnóstico , Anciano , China/epidemiología , Demencia/epidemiología , Demencia/diagnóstico , Prevalencia , Factores de Riesgo , Anciano de 80 o más Años
19.
ACS Nano ; 18(20): 13286-13297, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728215

RESUMEN

The ideal interface design between the metal and substrate is crucial in determining the overall performance of the alkyne semihydrogenation reaction. Single-atom alloys (SAAs) with isolated dispersed active centers are ideal media for the study of reaction effects. Herein, a charge-asymmetry "armor" SAA (named Pd1Fe SAA@PC), which consists of a Pd1Fe alloy core and a semiconducting P-doped C (PC) shell, is rationally designed as an ideal catalyst for the selective hydrogenation of alkynes with high efficiency. Multiple spectroscopic analyses and density functional theory calculations have demonstrated that Pd1Fe SAA@PC is dual-regulated by lattice tensile and Schottky effects, which govern the selectivity and activity of hydrogenation, respectively. (1) The PC shell layer applied an external traction force causing a 1.2% tensile strain inside the Pd1Fe alloy to increase the reaction selectivity. (2) P doping into the C-shell layer realized a transition from a p-type semiconductor to an n-type semiconductor, thereby forming a unique Schottky junction for advancing alkyne semihydrogenation activity. The dual regulation of lattice strain and the Schottky effect ensures the excellent performance of Pd1Fe SAA@PC in the semihydrogenation reaction of phenylethylene, achieving a conversion rate of 99.9% and a selectivity of 98.9% at 4 min. These well-defined interface modulation strategies offer a practical approach for the rational design and performance optimization of semihydrogenation catalysts.

20.
Angew Chem Int Ed Engl ; 63(32): e202408765, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38797705

RESUMEN

Despite the great research interest in two-dimensional metal nanowire networks (2D MNWNs) due to their large specific surface area and abundance of unsaturated coordination atoms, their controllable synthesis still remains a significant challenge. Herein, a microfluidics laminar flow-based approach is developed, enabling the facile preparation of large-scale 2D structures with diverse alloy compositions, such as PtBi, AuBi, PdBi, PtPdBi, and PtAuCu alloys. Remarkably, these 2D MNWNs can reach sizes up to submillimeter scale (~220 µm), which is significantly larger than the evolution from the 1D or 3D counterparts that typically measure only tens of nanometers. The PdBi 2D MNWNs affords the highest specific activity for formic acid (2669.1 mA mg-1) among current unsupported catalysts, which is 103.5 times higher than Pt-black, respectively. Furthermore, in situ Fourier transform infrared (FTIR) experiments provide comprehensive evidence that PdBi 2D MNWNs catalysts can effectively prevent CO* poisoning, resulting in exceptional activity and stability for the oxidation of formic acid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA