Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(41): e202208667, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35876718

RESUMEN

Single-atom sites (SASs) are commonly stabilized and influenced by neighboring atoms in the host; disclosing the structure-reactivity relationships of SASs in water electrolysis is one of the grand challenges originating from the tremendous wealth of support materials with complex structures. Through a multidisciplinary view of the design principles, synthesis strategies, characterization techniques, and theoretical analysis of structure-performance correlations, this timely Review is dedicated to summarizing the most recent progress in tailoring bond microenvironments on different supports and discussing the reaction pathways and performance advantages of different SAS structures for water electrolysis. The essence and mechanisms of how SAS structures influence electrocatalysis and the critical requirements for future developments are discussed. Finally, the challenges and perspectives are also provided to stimulate the practical, widespread utilization of SAS catalysts in water-splitting electrolyzers.

2.
Adv Mater ; 34(1): e2105080, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34693564

RESUMEN

Circularly polarized thermally activated delayed fluorescence (CP-TADF) and multiple-resonance thermally activated delayed fluorescence (MR-TADF), which exhibit novel circularly polarized luminescence and excellent color fidelity, respectively, have gained immense popularity. In this study, integrated CP-TADF and MR-TADF (CPMR-TADF) are prepared by strategic design and synthesis of asymmetrical peripherally locked enantiomers, which are separated and denoted as (P,P″,P″)-/(M,M″,M″)-BN4 and (P,P″,P″)-/(M,M″,M″)-BN5 and exhibit TADF and circularly polarized light (CPL) properties. As the entire molecular frame participates in the frontier molecular orbitals, the resulting helical chirality of (+)/(-)-BN4- and (+)/(-)-BN5-based solution-processed organic light-emitting diodes (OLEDs) helps in achieving a narrow full width at half maximum (FWHM) of 49/49 and 48/48 nm and a high maximum external quantum efficiency (EQE) of 20.6%/19.0% and 22.0%/26.5%, respectively. Importantly, unambiguous circularly polarized electroluminescence signals with dissymmetry factors (gEL ) of +3.7 × 10-3 /-3.1 × 10-3 (BN4) and +1.9 × 10-3 /-1.6 × 10-3 (BN5) are obtained. The results indicate successful exploitation of CPMR-TADF-emitter-based OLEDs to exhibit three characteristics: high efficiency, color purity, and circularly polarized light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA