Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 40, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38175236

RESUMEN

Folic acid deficiency is common worldwide and is linked to an imbalance in gut microbiota. However, based on model animals used to study the utilization of folic acid by gut microbes, there are challenges of reproducibility and individual differences. In this study, an in vitro fecal slurry culture model of folic acid deficiency was established to investigate the effects of supplementation with 5-methyltetrahydrofolate (MTHF) and non-reduced folic acid (FA) on the modulation of gut microbiota. 16S rRNA sequencing results revealed that both FA (29.7%) and MTHF (27.9%) supplementation significantly reduced the relative abundance of Bacteroidetes compared with control case (34.3%). MTHF supplementation significantly improved the relative abundance of Firmicutes by 4.49%. Notably, compared with the control case, FA and MTHF supplementation promoted an increase in fecal levels of Lactobacillus, Bifidobacterium, and Pediococcus. Short-chain fatty acid (SCFA) analysis showed that folic acid supplementation decreased acetate levels and increased fermentative production of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a model of folic acid deficiency in humans to study the gut microbiota and demonstrate that exogenous folic acid affects the composition of the gut microbiota and the level of SCFAs. KEY POINTS: • Establishment of folic acid deficiency in an in vitro culture model. • Folic acid supplementation regulates intestinal microbes and SCFAs. • Connections between microbes and SCFAs after adding folic acid are built.


Asunto(s)
Deficiencia de Ácido Fólico , Microbioma Gastrointestinal , Animales , Humanos , Ácido Fólico , Fermentación , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Ácidos Grasos Volátiles
2.
J Sci Food Agric ; 103(15): 7694-7701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37439279

RESUMEN

BACKGROUND: Folic acid is a class of B vitamins that have the function of improving intestinal microbiota. RESULT: Lactiplantibacillus plantarum LZ227, which is a highly folate-producing strain, was used as the research object, and the folic acid produced by LZ227 was further identified by liquid chromatography-mass spectrometry, and the structural diversity, community composition, abundance difference, and short-chain fatty acids content in fermentation broth were studied by the manure slurry fermentation model. The results showed that the folic acid produced by LZ227 was 5-methyltetrahydrofolate. CONCLUSION: LZ227 can increase the intestinal microbial diversity in the folate-free state, regulate the intestinal flora, increase the abundance of Firmicutes in the intestinal flora, and inhibit the abundance of Bacteroidetes. LZ227 can inhibit the growth of Alistipes, Parabacteroides, and Bacteroides in the intestine. LZ227 significantly reduced the acetic acid content and significantly increased the butyric acid content in the folate-free case. © 2023 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Complejo Vitamínico B , Ácido Fólico , Intestinos , Firmicutes , Bacteroidetes
3.
Food Chem X ; 14: 100344, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35669456

RESUMEN

The potential of Lactiplantibacillus plantarum ZJ316 (ZJ316) as a starter culture for quality improvement and microbial community regulation in pickled mustard fermentation was elucidated in this study. Our results show that ZJ316 can deter the occurrence of nitrite peaks and maintain the nitrite content of pickled mustard at a low level (0.34 mg/kg). The headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry results indicate that ZJ316 gives a good flavor to pickled mustard. According to the 16S rDNA results, Firmicutes were the predominant microbiota after inoculation with ZJ316, and the abundances of Citrobacter, Enterobacter, and Proteus decreased simultaneously. In addition, antibacterial activity analysis showed that the supernatant of pickled mustard inoculated with ZJ316 had a significant inhibitory effect on Staphylococcus aureus D48, Escherichia coli DH5α, and Listeria monocytogenes LM1. In conclusion, L. plantarum ZJ316 has potential for use as an ideal starter in the process of vegetable fermentation.

4.
Nat Commun ; 12(1): 2952, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011925

RESUMEN

The climate-carbon cycle feedback is one of the most important climate-amplifying feedbacks of the Earth system, and is quantified as a function of carbon-concentration feedback parameter (ß) and carbon-climate feedback parameter (γ). However, the global climate-amplifying effect from this feedback loop (determined by the gain factor, g) has not been quantified from observations. Here we apply a Fourier analysis-based carbon cycle feedback framework to the reconstructed records from 1850 to 2017 and 1000 to 1850 to estimate ß and γ. We show that the ß-feedback varies by less than 10% with an average of 3.22 ± 0.32 GtC ppm-1 for 1880-2017, whereas the γ-feedback increases from -33 ± 14 GtC K-1 on a decadal scale to -122 ± 60 GtC K-1 on a centennial scale for 1000-1850. Feedback analysis further reveals that the current amplification effect from the carbon cycle feedback is small (g is 0.01 ± 0.05), which is much lower than the estimates by the advanced Earth system models (g is 0.09 ± 0.04 for the historical period and is 0.15 ± 0.08 for the RCP8.5 scenario), implying that the future allowable CO2 emissions could be 9 ± 7% more. Therefore, our findings provide new insights about the strength of climate-carbon cycle feedback and about observational constraints on models for projecting future climate.

5.
Environ Sci Technol ; 54(17): 10493-10501, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786589

RESUMEN

Efforts of using data assimilation to improve PM2.5 forecasts have been hindered by the limited number of species and incomplete vertical coverage in the observations. The common practice of initializing a chemical transport model (CTM) with assimilated initial conditions (ICs) may lead to model imbalances, which could confine the impacts of assimilated ICs within a day. To address this challenge, we introduce an initial error transport model (IETM) approach to improving PM2.5 forecasts. The model describes the transport of initial errors by advection, diffusion, and decay processes and calculates the impacts of assimilated ICs separately from the CTM. The CTM forecasts with unassimilated ICs are then corrected by the IETM output. We implement our method to improve PM2.5 forecasts over central and eastern China. The reduced root-mean-square errors for 1-, 2-, 3-, and 4-day forecasts during January 2018 were 51.2, 27.0, 16.4, and 9.4 µg m-3, respectively, which are 3.2, 6.9, 8.6, and 10.4 times those by the CTM forecasts with assimilated ICs. More pronounced improvements are found for highly reactive PM2.5 components. These and similar results for July 2017 suggest that our method can enhance and extend the impacts of the assimilated data without being affected by the imbalance issue.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Modelos Químicos , Material Particulado/análisis
6.
Glob Chang Biol ; 24(9): 3954-3968, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29665215

RESUMEN

Net biome productivity (NBP) dominates the observed large variation of atmospheric CO2 annual increase over the last five decades. However, the dominant regions controlling inter-annual to multi-decadal variability of global NBP are still controversial (semi-arid regions vs. temperate or tropical forests). By developing a theory for partitioning the variance of NBP into the contributions of net primary production (NPP) and heterotrophic respiration (Rh ) at different timescales, and using both observation-based atmospheric CO2 inversion product and the outputs of 10 process-based terrestrial ecosystem models forced by 110-year observational climate, we tried to reconcile the controversy by showing that semi-arid lands dominate the variability of global NBP at inter-annual (<10 years) and tropical forests dominate at multi-decadal scales (>30 years). Results further indicate that global NBP variability is dominated by the NPP component at inter-annual timescales, and is progressively controlled by Rh with increasing timescale. Multi-decadal NBP variations of tropical rainforests are modulated by the Pacific Decadal Oscillation (PDO) through its significant influences on both temperature and precipitation. This study calls for long-term observations for the decadal or longer fluctuations in carbon fluxes to gain insights on the future evolution of global NBP, particularly in the tropical forests that dominate the decadal variability of land carbon uptake and are more effective for climate mitigation.


Asunto(s)
Secuestro de Carbono , Ciclo del Carbono , Dióxido de Carbono , Clima Desértico , Ecosistema , Bosques , Modelos Teóricos , Bosque Lluvioso , Temperatura , Tiempo
7.
Proc Natl Acad Sci U S A ; 109(32): 12911-5, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826257

RESUMEN

At the United Nations Framework Convention on Climate Change Conference in Cancun, in November 2010, the Heads of State reached an agreement on the aim of limiting the global temperature rise to 2 °C relative to preindustrial levels. They recognized that long-term future warming is primarily constrained by cumulative anthropogenic greenhouse gas emissions, that deep cuts in global emissions are required, and that action based on equity must be taken to meet this objective. However, negotiations on emission reduction among countries are increasingly fraught with difficulty, partly because of arguments about the responsibility for the ongoing temperature rise. Simulations with two earth-system models (NCAR/CESM and BNU-ESM) demonstrate that developed countries had contributed about 60-80%, developing countries about 20-40%, to the global temperature rise, upper ocean warming, and sea-ice reduction by 2005. Enacting pledges made at Cancun with continuation to 2100 leads to a reduction in global temperature rise relative to business as usual with a 1/3-2/3 (CESM 33-67%, BNU-ESM 35-65%) contribution from developed and developing countries, respectively. To prevent a temperature rise by 2 °C or more in 2100, it is necessary to fill the gap with more ambitious mitigation efforts.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Dióxido de Carbono/análisis , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/legislación & jurisprudencia , Países Desarrollados , Países en Desarrollo , Contaminación del Aire/legislación & jurisprudencia , Simulación por Computador , Modelos Teóricos , Política Pública , Naciones Unidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA