Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
ACS Appl Mater Interfaces ; 16(23): 30462-30470, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830131

RESUMEN

Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid-state electrolyte (SSE) because of its fast ionic conduction and notable chemical/electrochemical stability toward the lithium (Li) metal. However, poor interface wettability and large interface resistance between LLZTO and Li anode greatly restrict its practical applications. In this work, we develop an in situ chemical conversion strategy to construct a highly conductive Li2S@C layer on the surface of LLZTO, enabling improved interfacial wettability between LLZTO and the Li anode. The Li/Li2S@C-LLZTO-Li2S@C/Li symmetric cell has a low interface impedance of 78.5 Ω cm2, much lower than the 970 Ω cm2 of a Li/LLZTO/Li cell. Moreover, the Li/Li2S@C-LLZTO-Li2S@C/Li cell exhibits a high critical current density of 1.4 mA cm-2 and an ultralong stability of 3000 h at 0.1 mA cm-2. When used in a LiFePO4 battery, the Li/Li2S@C-LLZTO/LiFePO4 battery exhibits a high initial discharge capacity of 150.8 mA h g-1 at 0.2 C without lithium storage capacity attenuation during 200 cycles. This work provides a novel and feasible strategy to address interface issues of SSEs and achieve lithium-dendrite-free solid-state batteries.

2.
J Agric Food Chem ; 72(17): 9818-9827, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647087

RESUMEN

The feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.


Asunto(s)
Envejecimiento , Bifidobacterium bifidum , Heces , Galactosa , Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Animales , Lacticaseibacillus casei/metabolismo , Humanos , Ratones , Probióticos/administración & dosificación , Probióticos/farmacología , Bifidobacterium bifidum/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Heces/química , Masculino , Trasplante de Microbiota Fecal , Persona de Mediana Edad , Femenino , Anciano , Ratones Endogámicos C57BL , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo
3.
Adv Healthc Mater ; 12(23): e2300524, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37269141

RESUMEN

Vaccination immunotherapy has revolutionized cancer treatment modalities. Although the immunomodulatory adjuvant generally employs for potentiating vaccine response, systemic administration may drive immune-related side effects, even immune tolerance. Therefore, tunable immunoadjuvants are highly desirable to simultaneously stimulate the immune response and mitigate systemic toxicity. Self-immolated nanoadjuvants are herein reported to potentiate vaccination immunotherapy of cancer. The nanoadjuvants are engineered by co-assembling an intracellular acidity-ionizable polymeric agonist of toll-like receptor 7/8 resiquimod (R848) and polymeric photosensitizer pyropheophorbide a (PPa). The resultant nanoadjuvants specifically accumulate at the tumor site via passive targeting and are dissociated in the acidic endosome versicles to activate PPa via protonation of the polymer backbone. Upon 671 nm laser irradiation, PPa performed photodynamic therapy to induce immunogenic cell death of tumor cells and subsequently releases R848 in a customized manner, which synergistically activates dendritic cells (DCs), promotes antigen cross-presentation, and eventually recruits cytotoxic T lymphocytes for tumor regression. Furthermore, the synergistic in situ vaccination immunotherapy with immune checkpoint blockade induce sustained immunological memory to suppress tumor recurrence in the rechallenged colorectal tumor model.


Asunto(s)
Neoplasias Colorrectales , Células Dendríticas , Humanos , Células Dendríticas/metabolismo , Inmunoterapia , Linfocitos T Citotóxicos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Adyuvantes Inmunológicos , Vacunación
4.
Nutrients ; 15(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37049450

RESUMEN

With an ageing population, healthy longevity is becoming an important scientific concern. The longevity phenomenon is closely related to the intestinal microflora and is highly complicated; it is challenging to identify and define the core gut microbiota associated with longevity. Therefore, in this study, 16S rRNA sequencing data were obtained from a total of 135 faecal samples collected as part of the latest sampling and pre-collection initiative in the Guangxi longevity area, and weighted gene co-expression network analysis (WGCNA) was used to find a mediumpurple3 network module significantly associated with the Guangxi longevity phenomenon. Five core genera, namely, Alistipes, Bacteroides, Blautia, Lachnospiraceae NK4A136 group, and Lactobacillus, were identified via network analysis and random forest (RF) in this module. Two potential probiotic strains, Lactobacillus fermentum and Bacteroides fragilis, were further isolated and screened from the above five core genera, and then combined and used as an intervention in naturally ageing mice. The results show a change in the key longevity gut microbiota in mice toward a healthy longevity state after the intervention. In addition, the results show that the probiotic combination effectively ameliorated anxiety and necrosis of hippocampal neuronal cells in senescent mice, improving their antioxidant capacity and reducing their inflammation levels. In conclusion, this longer-term study provides a new approach to the search for longevity hub microbiota. These results may also provide an important theoretical reference for the healthification of the intestinal microflora in the general population, and even the remodelling of the structure of the longevity-state intestinal microflora.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Ratones , Animales , Microbioma Gastrointestinal/fisiología , ARN Ribosómico 16S/genética , China , Envejecimiento/fisiología
6.
Nutrients ; 14(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501069

RESUMEN

The purpose of this study was to investigate the effects of different dietary fiber compounds (DFCs) on characteristic human flora and their metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. The results show that DFC1 (cereal fiber) increased the level of Lactobacillus (p < 0.05), DFC2 (fruit and vegetable and cereal fiber) promoted the growth of Lactobacillus and Bifidobacterium more significantly than DFC3 (fruit and vegetable fiber) (p < 0.01), and all three DFCs decreased the level of Escherichia coli (p < 0.05). The metabolomic analysis showed that there was variability in the metabolites and the metabolic pathways of different DFCs. The redundancy analysis revealed that the fiber content was positively correlated with Lactobacillus, Bifidobacterium, Bacteroides, acetic acid, butyric acid, propionic acid, lactic acid, and betaine, and negatively correlated with Escherichia coli, succinic acid, alanine, choline, aspartic acid, and α-glucose. Overall, this study found that different DFCs have different positive correlations on characteristic human flora and metabolites, and DFC2 is more favorable to the proliferation of the intestinal beneficial genera Lactobacillus and Bifidobacterium after in vitro fermentation, having a probiotic role in glucose, amino acid, and lipid metabolisms. This study may provide a theoretical reference for the search of optimal dietary fiber combination strategies mediated by longevity dietary pattern.


Asunto(s)
Fibras de la Dieta , Ácidos Grasos Volátiles , Humanos , Ácidos Grasos Volátiles/metabolismo , Fibras de la Dieta/análisis , Fermentación , Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Escherichia coli/metabolismo , Glucosa/metabolismo
8.
Front Nutr ; 9: 1051964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407526

RESUMEN

In the protein nutrition strategy of middle-aged and elderly people, some believe that low protein is good for health, while others believe high protein is good for health. Facing the contradictory situation, the following hypothesis is proposed. There is a process of change from lower to higher ratio of protein nutritional requirements that are good for health in the human body after about 50 years of age, and the age at which the switch occurs is around 65 years of age. Hence, in this study, 50, 25-month-old male rats were randomly divided into five groups: Control (basal diet), LP (low-protein diet with a 30% decrease in protein content compared to the basal diet), HP (high-protein diet with a 30% increase in protein content compared to the basal diet), Model 1 (switched from LP to HP feed at week 4), and Model 2 (switched from LP to HP feed at week 7). After a total of 10 weeks intervention, the liver and serum samples were examined for aging-related indicators, and a newly comprehensive quantitative score was generated using principal component analysis (PCA). The effects of the five protein nutritional modalities were quantified in descending order: Model 1 > HP > LP > Control > Model 2. Furthermore, the differential metabolites in serum and feces were determined by orthogonal partial least squares discriminant analysis, and 15 differential metabolites, significantly associated with protein intake, were identified by Spearman's correlation analysis (p < 0.05). Among the fecal metabolites, 10 were positively correlated and 3 were negatively correlated. In the serum, tyrosine and lactate levels were positively correlated, and acetate levels were negatively correlated. MetaboAnalyst analysis identified that the metabolic pathways influenced by protein intake were mainly related to amino acid and carbohydrate metabolism. The results of metabolomic analysis elucidate the mechanisms underlying the preceding effects to some degree. These efforts not only contribute to a unified protein nutrition strategy but also positively impact the building of a wiser approach to protein nutrition, thereby helping middle-aged and older populations achieve healthy aging.

10.
J Nanobiotechnology ; 20(1): 207, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501794

RESUMEN

As a typical class of crystalline porous materials, metal-organic framework possesses unique features including versatile functionality, structural and compositional tunability. After being reduced to two-dimension, ultrathin metal-organic framework layers possess more external excellent properties favoring various technological applications. In this review article, the unique structural properties of the ultrathin metal-organic framework nanosheets benefiting from the planar topography were highlighted, involving light transmittance, and electrical conductivity. Moreover, the design strategy and versatile fabrication methodology were summarized covering discussions on their applicability and accessibility, especially for porphyritic metal-organic framework nanosheet. The current achievements in the bioapplications of two-dimensional metal-organic frameworks were presented comprising biocatalysis, biosensor, and theranostic, with an emphasis on reactive oxygen species-based nanomedicine for oncology treatment. Furthermore, current challenges confronting the utilization of two-dimensional metal-organic frameworks and future opportunities in emerging research frontiers were presented.


Asunto(s)
Estructuras Metalorgánicas , Biocatálisis , Conductividad Eléctrica , Nanomedicina , Porosidad
14.
Bioengineered ; 12(2): 10254-10263, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34637696

RESUMEN

This research was to explore antibiotic-induced drug resistance of Salmonella enteritidis and its biofilm formation mechanism. Kirby-Bauer (K-B) disk method recommended by Clinical and Laboratory Standards Institute (CLSI) was used to test drug sensitivity of Salmonella enteritidis to 16 kinds of antibiotics including ß-lactams, aminoglycosides, quinolones, sulfonamides, chloramphenicols, and tetracyclines. Polymerase chain reaction (PCR) was performed to detect carrying of drug resistance genes of 29 kinds of antibiotics including ß-lactams, aminoglycosides, quinolones, sulfonamides, chloramphenicols, and tetracyclines of Salmonella enteritidis. The expressions of esp, ebpA, ge1E, and fsrB genes in biofilm group and plankton group were detected when Salmonella was induced, and difference of gene expression was detected by FQ-PCR. The drug resistance rates of Salmonella enteritidis to nalidixic acid, ampicillin, streptomyces, and cefoperazone were high, which were 94.5%, 75%, 67%, and 52%, respectively. 94 strains of Salmonella enteritidis formed 22 kinds of drug resistance spectrum, the strains were generally resistant to 4-5 antibiotics, and some strains formed fixed drug resistance spectrum as follows: AMP-CFP-STR-NA-TE (22.6,21.7%), AMP-STR-NA-TE (17,16%), and AMP-CFP-STR-NA (11.1,10.6%). During biofilm formation, fsr can increase expression of ge1E and decrease expression of esp and ebpA. Consequently, Salmonella enteritidis was generally resistant to nalidixic acid, ampicillin, and streptomycin, and the multidrug resistance was severe. The drug resistance genes sul2, sul3, blaTEM-1-like, tet(A), and tet(G) were highly carried in Salmonella enteritidis. Esp, ebpA, ge1E, and fsrB genes were closely related to biofilm formation of Salmonella enteritidis.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana , Salmonella enteritidis/fisiología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Plancton/efectos de los fármacos , Plancton/genética , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/genética
15.
Bioact Mater ; 6(12): 4301-4318, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33997507

RESUMEN

In recent years, reactive species-based cancer therapies have attracted tremendous attention due to their simplicity, controllability, and effectiveness. Herein, we overviewed the state-of-art advance for photo-controlled generation of highly reactive radical species with nanomaterials for cancer therapy. First, we summarized the most widely explored reactive species, such as singlet oxygen, superoxide radical anion (O2 ●-), nitric oxide (●NO), carbon monoxide, alkyl radicals, and their corresponding secondary reactive species generated by interaction with other biological molecules. Then, we discussed the generating mechanisms of these highly reactive species stimulated by light irradiation, followed by their anticancer effect, and the synergetic principles with other therapeutic modalities. This review might unveil the advantages of reactive species-based therapeutic methodology and encourage the pre-clinical exploration of reactive species-mediated cancer treatments.

16.
ACS Nano ; 15(4): 7638-7648, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33792303

RESUMEN

Covalent organic frameworks (COFs) have shown great potential in catalysis and the biomedical fields, but monodisperse COFs with tunable sizes are hard to obtain. Herein, we successfully developed a series of COFs based on electron donor-acceptor strategy in mild conditions. The synthetic COFs exhibit excellent colloidal stability with uniform spherical morphology. The sizes can be flexibly adjusted by the amount of catalyst, and the absorption spectra also vary with the sizes. By changing the electron-donating ability of the monomers, the corresponding COFs possess a wide range of absorption spectra, which can be even extended to the second near-infrared biowindow. The obtained COFs possess potent photothermal activity under laser irradiation, and could inhibit the growth of tumors effectively. This work provides a strategy for the synthesis of monodisperse COFs with variable absorption for their potential applications.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Catálisis , Humanos , Neoplasias/terapia
17.
J Mater Chem B ; 9(9): 2334-2340, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33623945

RESUMEN

Small molecular nanomedicines that integrate the flexibility of self-assembly strategies and the advantages of a precise molecular structure, a high drug content and controlled drug release are effective diagnostic and therapeutic modalities. Herein, merocyanine-paclitaxel conjugates (MC-PTX) were developed and fabricated by using the degradable ester bonds as the linker. The as-prepared MC-PTX could self-assemble into nanoparticles (MC-PTX NPs) using the non-covalent molecular interaction via the nanoprecipitation method. MC-PTX NPs possess a favorable biological stability and can efficiently release the paclitaxel (PTX) activated by the heat of the photoactive material merocyanine under light illumination, as monitored using dynamic light scattering. The obtained MC-PTX NPs could be endocytosed into cancer cells and release PTX under laser irradiation in the cytoplasm, thus eliciting a satisfactory anticancer effect. Photothermal triggered degradation upon light illumination could enhance the chemotherapeutic efficacy of paclitaxel. The fluorescent nature of the NPs could visualize the internalization process. We believe that this robust nanomedicine offers a novel strategy to facilitate clinical translation for use as a small molecular chemotherapy nanomedicine.


Asunto(s)
Benzopiranos/química , Portadores de Fármacos/química , Indoles/química , Paclitaxel/química , Paclitaxel/farmacología , Fototerapia/métodos , Transporte Biológico , Línea Celular Tumoral , Citoplasma/metabolismo , Liberación de Fármacos , Ésteres/química , Humanos , Nanomedicina , Nanopartículas/química , Paclitaxel/metabolismo
18.
J Mater Chem B ; 8(24): 5305-5311, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32453332

RESUMEN

BODIPYs are highly potential photoactive agents for cancer theragnostics. The rational design of BODIPY-based photoactive nanodrugs with high efficiency and near-infrared (NIR) absorption is imperative. Herein, we developed a donor-acceptor-donor (D-A-D) organic photosensitizer (PS) (BODIPY, named NBB), which possessed strong absorption in the NIR region due to the multi-intersection of intramolecular charge transfer (ICT), photoinduced electron transfer (PET), and heavy atom effects. Through a nanoprecipitation method, NBB nanoparticles (NPs) were facilely prepared. The as-prepared NBB NPs exhibited favorable water-stability and photostability. In particular, the outstanding photon absorption capacity endows the NPs with high photothermal conversion efficiency (η = 53.8%) and active singlet oxygen (1O2) generation ability upon 808 nm laser irradiation, and promotes their tumour inhibition efficiency via the combination of photothermal/photodynamic therapy (half-maximal inhibitory concentration IC50 = 8.11 and 7.77 µM for HeLa and HepG2 cells, respectively). Together with the favorable synthetic yield and excellent antitumour effect, we envision that this exploration can provide beneficial guidance for the clinical translation of BODIPY-based PSs for phototherapy.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Nanopartículas/química , Fármacos Fotosensibilizantes/farmacología , Terapia Fototérmica , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Rayos Infrarrojos , Estructura Molecular , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Propiedades de Superficie , Células Tumorales Cultivadas
19.
PLoS One ; 15(2): e0223340, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053588

RESUMEN

The Rab GTPase activating protein known as Akt substrate of 160 kDa (AS160 or TBC1D4) regulates insulin-stimulated glucose uptake in skeletal muscle, the heart, and white adipose tissue (WAT). A novel rat AS160-knockout (AS160-KO) was created with CRISPR/Cas9 technology. Because female AS160-KO versus wild type (WT) rats had not been previously evaluated, the primary objective of this study was to compare female AS160-KO rats with WT controls for multiple, important metabolism-related endpoints. Body mass and composition, physical activity, and energy expenditure were not different between genotypes. AS160-KO versus WT rats were glucose intolerant based on an oral glucose tolerance test (P<0.001) and insulin resistant based on a hyperinsulinemic-euglycemic clamp (HEC; P<0.001). Tissue glucose uptake during the HEC of female AS160-KO versus WT rats was: 1) significantly lower in epitrochlearis (P<0.05) and extensor digitorum longus (EDL; P<0.01) muscles of AS160-KO compared to WT rats; 2) not different in soleus, gastrocnemius or WAT; and 3) ~3-fold greater in the heart (P<0.05). GLUT4 protein content was reduced in AS160-KO versus WT rats in the epitrochlearis (P<0.05), EDL (P<0.05), gastrocnemius (P<0.05), soleus (P<0.05), WAT (P<0.05), and the heart (P<0.005). Insulin-stimulated glucose uptake by isolated epitrochlearis and soleus muscles was lower (P<0.001) in AS160-KO versus WT rats. Akt phosphorylation of insulin-stimulated tissues was not different between the genotypes. A secondary objective was to probe processes that might account for the genotype-related increase in myocardial glucose uptake, including glucose transporter protein abundance (GLUT1, GLUT4, GLUT8, SGLT1), hexokinase II protein abundance, and stimulation of the AMP-activated protein kinase (AMPK) pathway. None of these parameters differed between genotypes. Metabolic phenotyping in the current study revealed AS160 deficiency produced a profound glucoregulatory phenotype in female AS160-KO rats that was strikingly similar to the results previously reported in male AS160-KO rats.


Asunto(s)
Proteínas Activadoras de GTPasa/deficiencia , Gluconeogénesis/genética , Glucosa/metabolismo , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas Activadoras de GTPasa/genética , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Hígado/metabolismo , Condicionamiento Físico Animal , Ratas , Ratas Transgénicas , Ratas Wistar , Transducción de Señal
20.
Biomaterials ; 235: 119792, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31972286

RESUMEN

Porphyrin-based porous organic polymers are highly potential candidates for cancer theranostics. However, un-controllable particle size and unclear photoactive mechanisms have been deemed to be "Achilles' heels" for their biomedical application. Herein, a facile self-template strategy has been applied to integrate two types of porous materials to build the MOF@POP-PEG nanocomposite (named HUC-PEG). As-synthesized HUC-PEG exhibited controllable particle shape and size, good biocompatibility, and better colloidal stability. Importantly, synergy "0 + 1 > 1" interface effects have been demonstrated to simultaneously enhance both the generation of more singlet oxygen (1O2) for photodynamic therapy (PDT) and local hyperthermia for photothermal therapy (PTT), thus to achieve favorable proliferation inhibition of tumor cell both in vitro and in vivo. Moreover, the strong X-ray attenuating ability of Hf element and excellent photothermal conversion efficacy endow this nanocomposite with computed tomography (CT)/photothermal imaging functions. We believe that our ingenious design may open a new horizon for the preparation of nanoscale POP-based therapeutic agents and also realize a paradigm shift in the understanding of photoactive mechanism in porous materials.


Asunto(s)
Hipertermia Inducida , Estructuras Metalorgánicas , Nanopartículas , Fotoquimioterapia , Línea Celular Tumoral , Fototerapia , Polímeros , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA