Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.364
Filtrar
1.
PLoS One ; 19(5): e0302753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739634

RESUMEN

Leprosy has a high rate of cripplehood and lacks available early effective diagnosis methods for prevention and treatment, thus novel effective molecule markers are urgently required. In this study, we conducted bioinformatics analysis with leprosy and normal samples acquired from the GEO database(GSE84893, GSE74481, GSE17763, GSE16844 and GSE443). Through WGCNA analysis, 85 hub genes were screened(GS > 0.7 and MM > 0.8). Through DEG analysis, 82 up-regulated and 3 down-regulated genes were screened(|Log2FC| > 3 and FDR < 0.05). Then 49 intersection genes were considered as crucial and subjected to GO annotation, KEGG pathway and PPI analysis to determine the biological significance in the pathogenesis of leprosy. Finally, we identified a gene-pathway network, suggesting ITK, CD48, IL2RG, CCR5, FGR, JAK3, STAT1, LCK, PTPRC, CXCR4 can be used as biomarkers and these genes are active in 6 immune system pathways, including Chemokine signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, Natural killer cell mediated cytotoxicity and Leukocyte transendothelial migration. We identified 10 crucial gene markers and related important pathways that acted as essential components in the etiology of leprosy. Our study provides potential targets for diagnostic biomarkers and therapy of leprosy.


Asunto(s)
Biomarcadores , Redes Reguladoras de Genes , Lepra , Lepra/genética , Lepra/microbiología , Humanos , Biomarcadores/metabolismo , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Mapas de Interacción de Proteínas/genética , Transducción de Señal
2.
Zhongguo Zhen Jiu ; 44(5): 495-502, 2024 May 12.
Artículo en Chino | MEDLINE | ID: mdl-38764098

RESUMEN

OBJECTIVE: To establish and validate a clinical prediction model of acupuncture and moxibustion for Bell's palsy so as to provide a tool for predicting the effect of acupuncture and moxibustion on Bell's palsy. METHODS: A total of 269 patients with Bell's palsy were collected from department of acupuncture, moxibustion and tuina, Shengli Oilfield Central Hospital, neurology department, Shenxian County Central Hospital and department of rehabilitation medicine, Dongying Municipal Hospital of TCM from June 2018 to June 2023. All of these cases were treated with acupuncture and moxibustion. Of them, 182 cases, from department of acupuncture, moxibustion and tuina, Shengli Oilfield Central Hospital and neurology department, Shenxian County Central Hospital, were randomized into a training group (128 cases) and an internal validation group (54 cases); 87 cases from department of rehabilitation medicine, Dongying Municipal Hospital of TCM were assigned to an external validation group. The clinical data of all of the cases were extracted from the electronic medical record information platform. Using SPSS25.0 and R4.2.3, through univariate and multivariate Logistic regression analysis, the independent factors influencing the effects of acupuncture and moxibustion on Bell's palsy were identified. By means of internal and external validations, the receiver operating characteristic curve (ROC), the goodness-of-fit curve (GFC) and the decision curve analysis (DCA) were plotted. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of the model were calculated; and its comprehensive performance was evaluated. RESULTS: The results of the multivariate Logistic regression analysis showed that the independent factors for the unsatisfactory effect on Bell's palsy were advanced age, severe symptoms before treatment, no use of steroids within 72 h of onset, and lack of acupuncture-moxibustion therapy during the acute phase or single acupuncture-moxibustion protocol (P<0.05, P<0.01). Based on these factors, nomogram model and online columnar plot prediction tool (https://bmuchen.shinyapps.io/dynnomapp/) were established. The area under the ROC curve of the model was 0.921 (95% CI: 0.877, 0.966), 0.876 (95% CI: 0.787, 0.966), and 0.846 (95% CI: 0.766, 0.926) in the training group, the internal validation group, and the external validation group, respectively, indicating good predictive value. The model showed a satisfactory calibration curve alignment. The decision threshold in the range of 0 to 0.8 provided clinical benefits for participants. The model exhibited the sensitivity from 65.9% to 88.0%, the specificity ranging from 77.3% to 90.7%, the accuracy from 77.8% to 85.9%, the positive predictive value from 83.3% to 90.1%, and the negative predictive value from 70.8% to 78.7%. The comprehensive evaluation indicated a satisfactory clinical application value of the model. CONCLUSION: The clinical prediction model of acupuncture and moxibustion for Bell's palsy is valuable in its practice and promotion to a certain extent. The predicted results are conductive to clinicians' judgement of the effect of acupuncture and moxibustion for this disease and making effective and high-quality clinical decisions, as well as formulating the optimal therapeutic regimen.


Asunto(s)
Terapia por Acupuntura , Parálisis de Bell , Moxibustión , Humanos , Masculino , Femenino , Parálisis de Bell/terapia , Persona de Mediana Edad , Adulto , Adulto Joven , Anciano , Adolescente , Resultado del Tratamiento , Curva ROC
3.
Zool Res ; 45(3): 586-600, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766743

RESUMEN

The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.


Asunto(s)
Perfilación de la Expresión Génica , Placenta , Placentación , Transcriptoma , Animales , Bovinos/genética , Femenino , Embarazo , Placenta/metabolismo , Trofoblastos/metabolismo
4.
Diabetes ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771941

RESUMEN

An important factor in the development of Type 1 diabetes (T1D) is the deficiency of inhibitory immune checkpoint ligands, specifically programmed cell death ligand 1 (PD-L1) and Galectin-9 (Gal-9), in ß-cells. Hence, modulation of the pancreas infiltrated T lymphocytes by exogenous PD-L1 or Gal-9 is an ideal approach for treating the new-onset T1D. Herein, we genetic engineered the macrophage cells to generate artificial extracellular vesicles (aEVs) overexpressing PD-L1 and Gal-9, which could restrict the islets autoreactive T lymphocytes and protect ß-cells from destruction. Intriguingly, overexpressing Gal-9 spurred macrophage polarization to M2 phenotype with immune suppressive attribute. Alternatively, both of PD-L1 and Gal-9 presenting aEVs (PD-L1-Gal-9 aEVs) favorably adhere to T cells via the interaction of programmed cell death protein 1 (PD-1)/PD-L1 or T cell immunoglobulin mucin 3 (TIM-3)/Gal-9. Moreover, PD-L1-Gal-9 aEVs prominently promoted effector T cell apoptosis and splenic regulatory T cells (Treg) cells differentiation in vitro. Virtually, PD-L1-Gal-9 aEVs efficaciously reversed the new-onset hyperglycemia in the NOD mice, prevented T1D progress, and declined the proportion and activation of CD4+ and CD8+ T cells infiltrating the pancreas notably, which together contributed to preserving the residual ß-cells survival and mitigating the hyperglycemia.

5.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732544

RESUMEN

BACKGROUND: Both cognitive decline and unhealthy lifestyles have been linked to an elevated risk of mortality in older people. We aimed to investigate whether a healthy lifestyle might modify the association between cognitive function and all-cause mortality in Chinese older populations. METHODS: The final analysis included 5124 individuals free of dementia, selected from the Chinese Longitudinal Healthy Longevity Survey from 2011 to 2018. Cognitive function was assessed in 2011 using the Mini-Mental State Examination (MMSE). A lifestyle score was calculated based on five lifestyle factors, including smoking, alcohol consumption, physical activity, diet, and body mass index. Cox proportional hazards models were performed to evaluate the association between baseline cognitive function and the risk of all-cause mortality, with an interaction term of cognitive function and lifestyle score being added to the models. RESULTS: The average age of participants was 81.87 years old at baseline. During a median follow-up of 6.4 years, 1461 deaths were documented. Both higher cognitive function (HR: 0.96; 95% CI: 0.96-0.97) and a healthier lifestyle (HR: 0.92; 95% CI: 0.87-0.97) were significantly associated with a reduced risk of mortality. We found that lifestyle significantly modified the association of cognitive function with mortality (p for interaction = 0.004). The inverse relation between cognitive function and mortality was found to be more pronounced among participants with a healthier lifestyle. Of note, among the lifestyle scores component, diet showed a significant interaction with mortality (p for interaction = 0.003), and the protective HR of the all-cause mortality associated with higher MMSE scores was more prominent among participants with healthy diets compared with unhealthy diets. CONCLUSIONS: Our study indicates that cognitive decline is associated with a higher risk of mortality, and such associations are attenuated by maintaining a healthy lifestyle, with a particular emphasis on healthy diet.


Asunto(s)
Cognición , Estilo de Vida Saludable , Humanos , Masculino , Femenino , Estudios Longitudinales , Estudios Prospectivos , China/epidemiología , Anciano de 80 o más Años , Anciano , Disfunción Cognitiva/mortalidad , Disfunción Cognitiva/epidemiología , Ejercicio Físico , Factores de Riesgo , Modelos de Riesgos Proporcionales , Índice de Masa Corporal , Mortalidad , Consumo de Bebidas Alcohólicas , Dieta , Causas de Muerte , Pueblo Asiatico , Pueblos del Este de Asia
6.
Prev Med ; : 107999, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735587

RESUMEN

BACKGROUND: Limited research explores the impact of body mass index (BMI) change on osteoporosis, regarding the role of lipid metabolism. We aimed to cross-sectionally investigate these relationships in 820 Chinese participants aged 55-65 from the Taizhou Imaging Study. METHODS: We used the baseline data collected between 2013 and 2018. T-score was calculated by standardizing bone mineral density and was used for osteoporosis and osteopenia diagnosis. Multinomial logistic regression was used to examine the effect of BMI change on bone health status. Multivariable linear regression was employed to identify the metabolites corrected with BMI change and T-score. Exploratory factor analysis (EFA) and mediation analysis were conducted to ascertain the involvement of the metabolites. RESULTS: BMI increase served as a protective factor against osteoporosis (OR = 0.79[0.71-0.88], P-value<0.001) and osteopenia (OR = 0.88[0.82-0.95], P-value<0.001). Eighteen serum metabolites were associated with both BMI change and T-score. Specifically, high-density lipoprotein (HDL) substructures demonstrated negative correlations (ß = -0.08 to -0.06 and - 0.12 to -0.08, respectively), while very low-density lipoprotein (VLDL) substructions showed positive correlations (ß = 0.09 to 0.10 and 0.10 to 0.11, respectively). The two lipid factors (HDL and VLDL) extracted by EFA acted as mediators between BMI change and T-score (Prop. Mediated = 8.16% and 10.51%, all P-value<0.01). CONCLUSION: BMI gain among Chinese aged 55-65 is beneficial for reducing the risk of osteoporosis. The metabolism of HDL and VLDL partially mediates the effect of BMI change on bone loss. Our research offers novel insights into the prevention of osteoporosis, approached from the perspective of weight management and lipid metabolomics.

7.
Int J Biol Macromol ; 269(Pt 2): 132163, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729490

RESUMEN

Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.

8.
Ultrason Sonochem ; 106: 106883, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38703594

RESUMEN

Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.

9.
ACS Omega ; 9(19): 21260-21269, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764628

RESUMEN

Natural gas generates varying concentrations of H2S during natural formation and extraction, and H2S leak accidents are frequent, posing a significant threat to the safety of human life and the environment. Conventional treatment technology equipment is large and does not meet the emergency requirements of the complex topographical gas field. This study aimed to design a pilot-scale method coupling the venturi and bubbling reactors to reduce equipment size and improve emergency capabilities for the absorption of leaked H2S. It found that the ring system self-priming venturi reactor, which was suitable only for the coarse treatment of toxic gases, maintained an absorption efficiency of around 50% under most operating conditions, with substantial variations due to changes in process parameters, but that redundancy of the bubbling reactor was high. With the synergistic effect of venturi and bubbling, the coupling process had an extremely high absorption efficiency, basically more than 95%. The experiments also showed that the H2S concentration at the outlet of the venturi-bubbling reactor increased with increasing inlet gas concentration and gas volume. The absorption performance improved significantly on increasing Fe3+ concentration; it increased first and then remained constant, and the optimum Fe3+ concentration for the absorption of leaked H2S was 21 000 mg/m3. The absorption performance decreased with increasing submergence height and then remained stable after the size of the inlet approached 600 mm, whereas the overall absorption efficiency of the venturi-bubbling reactor remained constant. The optimum operating temperature range was 10 °C-50 °C. The experimental system kept the outlet concentration below the emergency discharge standard for a continuous period of 48 h following practical use in the gas field and resulting in significant enhancement in mass transfer performance, fully satisfying the emergency requirements.

10.
World J Diabetes ; 15(5): 867-875, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38766431

RESUMEN

Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.

11.
Chemistry ; : e202401426, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757380

RESUMEN

The fabrication of supramolecular light-harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non-covalent self-assembly of a sequential LHS by pillar[5]arene-based host-guest interaction in water and its applications in white light-emitting diode (LED) device and latent fingerprint imaging. The host-guest complex WP5⸧G self-assembles into nanoparticles in water and shows enhanced aggregation-induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white-light emission when the molar ratio of WP5⸧G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white-light emission. In addition, the sequential LHS exhibit color-tunable fluorescence including red emission, which have been successfully applied to high-resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host-guest interaction and explored its multi-functional applications in white-light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.

12.
Sci Total Environ ; 933: 173235, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38750751

RESUMEN

Treatment of naphthenic acids (NAs) in wastewater is necessary due to its high toxicity and difficult degradation. In the heterogeneous Fenton-like advanced oxidation of organic pollutant system, the insufficient accessibility of oxidizing agent and NAs greatly hamper the reaction efficiency. CO2-responsive phase transfer materials derived from polyethylene glycol (PEG)-based deep eutectic solvents were specific targeted at the immiscible-binary phase system. The NAs oxidative degradation process was optimized including the kinds of catalyst (Molecular weight of PEG, constitute of DESs, and dosage.), temperature, flow rate of CO2, et al. With the help of fluorescence properties of catalyst, the hydrophilic-hydrophobic interaction was visual-monitored and further studied. The amphipathic property of PEG-200/Sodium persulfate/Polyether amine 230 (PEA230) greatly reduced the aqueous/organic phase transfer barrier between sodium persulfate and NAs (up to 84 %), thus accreting oxidation rate. The surface tension decreased from 35.364 mN/m to 28.595 mN/m. To control the reaction rate, the CO2 respond structure of amido played an important role. In addition, the interfacial transfer intermediates and oxidation pathways were also explored by nuclear magnetic resonance, flourier transform infrared spectroscopy, surface tension, and radical inhibition experiments. The mechanism of advanced oxidation of NAs catalyzed by CO2-responsive phase transfer catalyst was proposed, which would made up for the deficiency of the system theory of heterogeneous chemical oxidation of organic pollutants.

13.
Cancer Med ; 13(10): e7233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752474

RESUMEN

BACKGROUND: Over the past decade, immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, ICIs inevitably may cause a spectrum of immune-related adverse events, among which cardiovascular toxicity, particularly myocarditis, while infrequent, has garnered increasing attention due to its high fatality rate. METHODS: We conducted a multicenter retrospective study to characterize ICI-associated cardiovascular adverse events. Logistic regression was performed to explore the risk factors for the development of myocarditis and severe myocarditis. Receiver operating characteristic curves were conducted to assess the diagnostic abilities of cardiac biomarkers to distinguish different cardiovascular toxicities, and the performance and calibration were evaluated using Hosmer-Lemeshow test. RESULTS: Forty-four patients were identified, including thirty-five myocarditis, five heart failure, three arrhythmias, and one myocardial infarction. Compared with other patients, myocarditis patients had higher cardiac troponin-I (cTnI) levels (p < 0.001), higher creatine kinase levels (p = 0.003), higher creatine kinase isoenzyme-MB (CK-MB) levels (p = 0.013), and shorter time to the incidence of adverse cardiovascular events (p = 0.022) after ICI treatment. Twenty-one patients (60%) were classified as severe myocarditis, and they presented higher cardiac troponin I (cTnI) levels (p = 0.013), higher N-terminal pro-B-type natriuretic peptide levels (p = 0.031), higher creatine kinase levels (p = 0.018), higher CK-MB levels (p = 0.026), and higher neutrophil to lymphocyte ratio (NLR) levels (p = 0.016) compared to non-severe myocarditis patients after ICI treatment. Multivariate logistic regression showed that CK-MB (adjusted odds ratio [OR]: 1.775, 95% confidence interval [CI]: 1.055-2.984, p = 0.031) was the independent risk factor of the development of ICI-associated myocarditis, and cTnI (adjusted OR: 1.021, 95% CI: 1.002-1.039, p = 0.03) and NLR (adjusted OR: 1.890, 95% CI: 1.026-3.483, p = 0.041) were the independent risk factors of ICI-associated severe myocarditis. The receiver operating characteristic curve showed an area under curve of 0.785 (95% CI: 0.642 to 0.928, p = 0.013) for CK-MB, 0.765 (95% CI: 0.601 to 0.929, p = 0.013) for cTnI, and 0.773 for NLR (95% CI: 0.597 to 0.948, p = 0.016). CONCLUSIONS: Elevated CK-MB after ICI treatment is the independent risk factor for the incidence of ICI-associated myocarditis, and elevated cTnI and NLR after ICI treatment are the independent risk factors for the development of ICI-associated severe myocarditis. CK-MB, cTnI, and NLR demonstrated a promising predictive utility for the identification of ICI-associated myocarditis and severe myocarditis.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Miocarditis , Humanos , Masculino , Estudios Retrospectivos , Femenino , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Miocarditis/inducido químicamente , Miocarditis/epidemiología , Miocarditis/diagnóstico , Persona de Mediana Edad , Anciano , Factores de Riesgo , Biomarcadores/sangre , Neoplasias/tratamiento farmacológico , Troponina I/sangre , Curva ROC , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología , Forma MB de la Creatina-Quinasa/sangre , Péptido Natriurético Encefálico/sangre , Insuficiencia Cardíaca/inducido químicamente
14.
Chem Commun (Camb) ; 60(42): 5510-5513, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38690879

RESUMEN

MOFs have good potential for X-ray detection, but direct X-ray detection in single crystal form is rarely reported. In this work, we successfully synthesized Pb-TCPE, and the single crystal achieves a low detection limit and high detection sensitivity of 4812.6 µC Gyair-1 cm-2, which exhibits great potential for X-ray detection and imaging.

15.
Clin Rheumatol ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704780

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) often leads to interstitial lung disease (ILD), significantly affecting patient outcomes. This study explored the diagnostic accuracy of a multi-biomarker approach to offer a more efficient and accessible diagnostic strategy for RA-associated ILD (RA-ILD). METHODS: Patients diagnosed with RA, with or without ILD, at Beijing Tiantan Hospital from October 2019 to October 2023 were analyzed. A total of 125 RA patients were included, with 76 diagnosed with RA-ILD. The study focused on three categories of indicators: tumor markers, inflammatory indicators, and disease activity measures. The heatmap correlation analysis was employed to analyze the correlation among these indicators. Logistic regression was used to determine odds ratios (OR) for indicators linked to RA-ILD risk. Receiver-operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic potential of these indicators for RA-ILD. RESULTS: The results of logistic regression analysis showed that tumor markers (carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), and cytokeratin 19 fragment (CYFRA21-1)), as well as inflammatory indicators (neutrophil, neutrophil-to-lymphocyte ratio (NLR), platelet, C-reactive protein (CRP)) and disease activity measures (disease activity score-28-CRP (DAS28-CRP), rheumatoid factor (RF), and anti-cyclic peptide containing citrulline (anti-CCP)), were significantly associated with RA-ILD. The correlation coefficients among these indicators were relatively low. Notably, the combination indicator 4, which integrated the aforementioned three categories of biomarkers, demonstrated improved diagnostic accuracy with an AUC of 0.857. CONCLUSION: The study demonstrated that combining tumor markers, inflammatory indicators, and disease activity measures significantly enhanced the prediction of RA-ILD. Key Points • Multidimensional strategy: Integrated tumor markers, inflammatory indicators, and disease activity measures to enhance early detection of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). • Diagnostic accuracy: Employed heatmap correlation and logistic regression, identifying significant associations and improving diagnostic accuracy with a multidimensional biomarker combination. • Superior performance: The combined multidimensional biomarker strategy demonstrated higher diagnostic precision compared to individual or dual-category indicators. • Clinical relevance: Offers a promising, accessible approach for early detection of RA-ILD in clinical settings, potentially improving patient outcomes.

16.
Front Aging Neurosci ; 16: 1369014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711597

RESUMEN

Backgrounds: Numerous lines of evidence support the intricate interplay between Parkinson's disease (PD) and the PINK1-dependent mitophagy process. This study aimed to evaluate differences in plasma PINK1 levels among idiopathic PD, PD syndromes (PDs), and healthy controls. Methods: A total of 354 participants were included, consisting of 197 PD patients, 50 PDs patients, and 107 healthy controls were divided into two cohorts, namely the modeling cohort (cohort 1) and the validated cohort (cohort 2). An enzyme-linked immunosorbent assay (ELISA)-based analysis was performed on PINK1 and α-synuclein oligomer (Asy-no). The utilization of the area under the curve (AUC) within the receiver-operating characteristic (ROC) curves served as a robust and comprehensive approach to evaluate and quantify the predictive efficacy of plasma biomarkers alone, as well as combined models, in distinguishing PD patients from controls. Results: PINK1 and Asy-no were elevated in the plasma of PD and PDs patients compared to healthy controls. The AUCs of PINK1 (0.771) and Asy-no (0.787) were supposed to be potentially eligible plasma biomarkers differentiating PD from controls but could not differentiate PD from PDs. Notably, the PINK + Asy-no + Clinical RBD model showed the highest performance in the modeling cohort and was comparable with the PINK1 + Clinical RBD in the validation cohort. Moreover, there is no significant correlation between PINK1 and UPDRS, MMSE, HAMD, HAMA, RBDQ-HK, and ADL scores. Conclusion: These findings suggest that elevated PINK1 in plasma holds the potential to serve as a non-invasive tool for distinguishing PD patients from controls. Moreover, the outcomes of our investigation lend support to the plausibility of implementing a feasible blood test in future clinical translation.

17.
Heliyon ; 10(9): e30302, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711661

RESUMEN

In this paper, the limb of a goat is chosen as the research object, and according to mammalian anatomy, a bionic model called the quasi inverted pendulum with "J" curve spring (QIPJCS) model with nonlinear stiffness is built, and the equations of motion are derived. Based on these equations, the advantages of the QIPJCS model are illustrated from the aspect of the stable motion region by the SFA (step-to-fall analysis) numerical simulation method. These results are compared with the traditional SLIP model. Furthermore, the ARM (Apex-Return-Map) of this model is built, and the fixed points are analyzed. Finally, according to the locomotion law of goats running with gallop gaits and the analysis of the dead-point support effect, the dynamic motion mechanism of goat limbs is elucidated, and the equivalent mechanism model is built. Based on the mechanism, the dynamic mechanical analysis indicates that the joint driving torque can be minimized to conserve energy by optimizing the landing angle. The running mechanism research of quadruped mammals, which is based on the novel bionic stiffness model, provides theoretical support for the design of high-performance mechanical legs and the motion control of bionic robots.

18.
Mol Neurobiol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714582

RESUMEN

Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.

19.
Transl Pediatr ; 13(4): 575-583, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38715673

RESUMEN

Background: The use of extracorporeal membrane oxygenation (ECMO) technology has significantly decreased mortality rates associated with neonatal pulmonary hypertension and respiratory failure. Prone positioning ventilation (PPV) is a commonly used technique in critically ill infants, designed to improve thoracic pressure gradients, re-expand dorsal lung segments, and increase oxygenation in approximately 70-80% of patients suffering from acute respiratory distress syndrome. This study aimed to evaluate the effects of PPV on pulmonary function in neonates undergoing venous-arterial extracorporeal membrane oxygenation (VA-ECMO). Methods: We conducted a retrospective analysis of clinical data from 17 neonates who received ECMO support in our institution, divided into two groups based on ventilation strategy: ECMO with PPV (ECMO-PPV, n=8) and ECMO with supine positioning ventilation (ECMO-SPV, n=9). Parameters such as the P/F ratio [arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2)], oxygenation index (OI), respiratory system compliance (Crs), and airway resistance (RAW) were collected and analyzed at baseline, and at 1, 2, and 3 days post-ECMO initiation. In the ECMO-PPV group, these parameters were also assessed 3 days pre-treatment and 2 hours post-treatment initiation. Results: Initial comparisons between ECMO-PPV and ECMO-SPV groups showed no significant difference in PaO2/FiO2, OI, Crs, or RAW. Throughout the ECMO treatment, both groups demonstrated gradual improvements in PaO2/FiO2 and Crs, and reductions in OI and RAW. Notably, by day 3, the ECMO-PPV group exhibited significant improvements in Crs and RAW compared to the ECMO-SPV group (P<0.05). Specifically, in the ECMO-PPV group, Crs significantly increased and RAW decreased after 2 hours of initiating PPV, with these changes becoming statistically significant by day 3 (Crs P=0.03, RAW P=0.03). No severe PPV-related complications were noted. Conclusions: PPV during neonatal ECMO may improve respiratory compliance and reduce RAW, potentially aiding lung recovery. Our findings suggest PPV as a viable strategy for neonates under ECMO support.

20.
BMC Biol ; 22(1): 104, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702712

RESUMEN

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Hormona Liberadora de Gonadotropina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Animales , Gonadotropinas/metabolismo , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metilación de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA