Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Waste Manag ; 182: 91-101, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643526

RESUMEN

The recycling of polyethylene terephthalate (PET) stands as an effective strategy for mitigating plastic pollution and reducing resource waste. The study aimed to investigate the characterization and elimination efficiency of volatile organic compounds (VOCs) present in rPET at various recycling stages using comprehensive two-dimensional gas chromatography-quadrupole-time-of-flight-mass spectrometry coupled with chemometrics. The results revealed that 52, 135, 95, 44, and 33 VOCs, mostly classified into three chemical groups, were tentatively identified in virgin - PET (v-PET), cold water washed - rPET (C-rPET), decontaminated - rPET (D-rPET), melt-extruded - rPET (M-rPET), and solid-state polycondensation - rPET (S-rPET), respectively. Regarding the VOCs with high and median detection frequencies, fatty acyls showed the highest elimination efficiency (100 % and 92 %), followed by organooxygen compounds (81 % and 99 %), others (97 % and 95 %), and benzene and substituted derivatives (82 % and 95 %) in term of HS-SPME. Following the recycling process, there was a general decrease in the concentration of almost all VOCs, as evidenced by the substantial reduction of o-Xylene, hexanoic acid, octanal, and D-limonene from 18.11, 22.43, 30.74, and 7.41 mg/kg to 0, 0, 3.97, and 0 mg/kg, respectively. However, it was noteworthy that the VOCs identified in the samples were not completely extracted, owing to the limitations of HS-SPME. Furthermore, chemometrics analysis indicated significant discrimination among VOCs from vPET, C-rPET, D-rPET, and M-rPET, while indistinct differences were observed between M-rPET and S-rPET. This study contributes to the enhancement of the recycling process and emphasizes the importance of safeguarding consumer health in terms of elimination of VOCs.


Asunto(s)
Tereftalatos Polietilenos , Reciclaje , Compuestos Orgánicos Volátiles , Tereftalatos Polietilenos/química , Compuestos Orgánicos Volátiles/análisis , Reciclaje/métodos , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida/métodos
2.
Sci Total Environ ; 926: 171852, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518818

RESUMEN

A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.


Asunto(s)
Dibutil Ftalato , Pseudomonas aeruginosa , Dibutil Ftalato/análisis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Multiómica , Espectrometría de Masas en Tándem , Biodegradación Ambiental
3.
Chemosphere ; 352: 141508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387658

RESUMEN

Recycled PET (rPET) is gaining popularity for use in the production of new food contact materials (FCMs) under the context of circular economy. However, the limited information on contaminants in rPET from China and concerns about their potential risk are major obstacles to their use in FCM in China. Fifty-five non-volatile compounds were tentatively identified in 126 batches of hot-washed rPET flakes aimed for food packaging applications in China. Although the 55 substances are not necessarily migratable and may not end up in the contacting media, their presence indicates a need for proper management and control across the value chain. For this reason, the 55 substances prioritized on the basis of level of concerns and in-silico genotoxicity profiler. Among them, dimethoxyethyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate were classified as level V substances, and Michler's ketone and 4-nitrophenol were both categorized as level V substances and had the genotoxic structure alert, while 2,4,5-trimethylaniline was specified with genotoxic structure alert. The above substances have high priority and may pose a potential risk to human health, therefore special attention should be paid to their migration from rPET. Aside from providing valuable information on non-volatile contaminants present in hot-washed rPET flakes coming from China, this article proposed a prioritization workflow that can be of great help to identify priority substances deserving special attention across the value chain.


Asunto(s)
Dibutil Ftalato , Contaminación de Alimentos , Humanos , China , Dibutil Ftalato/análisis , Contaminación de Alimentos/análisis , Reciclaje
4.
Artículo en Inglés | MEDLINE | ID: mdl-37831931

RESUMEN

The objective was to establish a robust and reliable approach for the characterisation of volatile organic compounds (VOCs) present in food contact paperboard. This was achieved through the utilisation of headspace solid-phase microextraction in tandem with comprehensive two-dimensional (2D) gas chromatography (GC) and quadrupole time-of-flight mass spectrometry (HS-SPME-GC × GC-QTOF-MS). The experimental parameters were optimised, involving the use of a DVB/C-WR/PDMS fibre at a temperature of 80 °C for a duration of 30 min. A total of 344 VOCs comprising aldehydes, ketones, alcohols, ethers, esters, alkanes and aromatic compounds, were tentatively identified in the samples. Twelve compounds believed to be from biogenic sources had a high odour impact making them major contributors to potential taint from the paperboard samples. Significant attention should be devoted to five compounds namely, 2-methylnaphthalene, 2-pentyl-furan, furfural, 1-octen-3-one and 1-octen-3-ol due to their potential adverse impact on the organoleptic qualities of packaged food items and their potential toxicity.Abbreviations: C-WR: carbon wide range; DVB: divinylbenzene; GC-MS: gas chromatography - mass spectrometry; GCxGC-QTOF-MS: comprehensive two-dimensional gas chromatography coupled to quadrupole-time-of-flight - mass spectrometry; HS-SPME: headspace - solid phase microextraction; LOD: limit of detection; LOQ: limit of quantification; OAV: odor activity values; PDMS: polydimethylsiloxane; RI: retention index; TTC: threshold of toxicological concern; VOC: volatile organic compound.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Aldehídos/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-37410927

RESUMEN

Plastic packaging waste, such as polyethylene terephthalate (PET) has increased significantly in recent decades, arousing a considerable and serious public concern regarding the environment, economy, and policy. Plastic recycling is a useful tool to mitigate this issue. Here, a feasible study was performed to investigate the potential of a novel method for identifying virgin and recycled PET. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was combined with various chemometrics, as a simple and reliable method that achieved a high discrimination rate for 105 batches of virgin PET (v-PET) and recycled PET (r-PET) based on 202 non-volatile organic compounds (NVOCs). Making use of orthogonal partial least-squares discrimination analysis (OPLS-DA) together with non-parametric tests, 26 marker compounds (i.e. 12 intentionally added substances (IAS) and 14 non-intentionally added substances (NIAS) as well as 31 marker compounds (i.e. 11 IAS and 20 NIAS) obtained from positive and combination of positive and negative ionization modes of UPLC-Q-TOF-MS, respectively, were successfully identified. Moreover, 100% accuracy was obtained using a decision tree (DT). Cross-discrimination based on misclassified samples using various chemometrics allowed the prediction accuracy to be improved and to identify a large sample set, thus greatly enhancing the application scope of this method. The possible origins of these detected compounds can be the plastic itself, as well as contamination from food, medicine, pesticides, industry-related substances, and degradation and polymerization products. As many of these compounds are toxic, especially those pesticide related, this indicates an urgent requirement for closed loop recycling. Overall, this analytical method provides a quick, accurate, and robust way to distinguish virgin from recycled PET and thus addresses the issue of potential virgin PET adulteration thereby detecting fraud in the area of PET recycling.


Asunto(s)
Quimiometría , Tereftalatos Polietilenos , Tereftalatos Polietilenos/análisis , Espectrometría de Masas/métodos , Cromatografía Liquida , Plásticos/análisis , Cromatografía Líquida de Alta Presión/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-36693199

RESUMEN

Due to recently introduced 'so-called' bio- and plant-based friendly food contact materials and articles (FCM/FCA), some neglected safety issues need to be raised. In this review, potential chemical contaminants from FCM/FCA made from or containing wood and bamboo are presented. Sources, migration, and analytical issues in determining contaminants including intentionally and non-intentionally added substances (IAS and NIAS, respectively) are reviewed. Most of the contaminants are components from melamine-formaldehyde-resin (MFR), paints and coatings, preservatives, and bleaching agents. Tableware made of MFR containing bamboo fibres as a filler are not always suitable for use as tableware since harmful amounts of melamine and formaldehyde can migrate from the tableware into food and even accelerate the degradation of certain polymers with which they are mixed. In addition, in the EU bamboo in plastic FCM is not authorized under Regulation (EU) 10/2011. Paints and coatings used to provide surface coverage for bamboo and wooden articles also pose a risk of migration of heavy metals. Limits on preservatives in wood FCM are covered by legislation in many countries, nevertheless their contamination should not be ignored. Some wood species are considered 'toxic' or contain 'toxic' constituents that should not be used in contact with food, which are worth considering for legislation. IAS analyses in bamboo and wooden FCM is generally not a problem, but has proven to be more challenging for NIAS. Due to a complex mixture of substances contained in plant-based materials, there is a need to improve databases for non-target screening of such chemicals.


Asunto(s)
Blanqueadores , Madera , Alimentos , Formaldehído , Bases de Datos Factuales , Polímeros , Contaminación de Alimentos , Embalaje de Alimentos
7.
Artículo en Inglés | MEDLINE | ID: mdl-36538705

RESUMEN

Plastic take-out food containers may release microplastics (MPs) into food and pose a potential risk to food safety and human health. Here, after being subjected to hot water treatment, MPs released from three types of plastic food containers (polypropylene, PP; polyethylene, PE; expanded polystyrene, EPS) were identified by micro-Raman spectroscopy. The results showed that the size of released MPs ranged from 0.8-38 µm and over 96% MPs were smaller than 10 µm. Various MPs concentrations were found from the three types of containers, that is, 1.90 × 104, 1.01 × 105, and 2.82 × 106 particles/L on average from PP, PE, and EPS, respectively. Moreover, based on thermal and morphology analysis, we discovered that both relaxations of the polymer chains in the rubbery state and defects caused by processing techniques might contribute to the release of MPs. Thus, such release can be reduced by increasing the thermal stability of the materials and mitigating the defects generated during production.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Microplásticos/análisis , Embalaje de Alimentos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
8.
J Hazard Mater ; 445: 130407, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444813

RESUMEN

A comparison was performed on various methods detecting the volatile contaminants (VCs) in recycled poly(ethylene terephthalate) (rPET) flakes, the results demonstrated that head-space solid phase micro-extraction combined with comprehensive two-dimensional gas chromatograph-tandem quadrupole-time-of-flight mass spectrometry (HS-SPME-GC×GC-QTOF-MS) was a sensitive, effective, accurate method, and successfully applied to analyze 57 rPET flakes collected from different recycling plants in China. A total of 212 VCs were tentatively identified, and the possible source were associated with plastic, food, and cosmetics. 45 VCs are classified as high-priority compounds with toxicity level IV or V and may pose a risk to human health. Combined chemometrics for further analysis revealed that significant differences among these three geographical recycling regions. 6, 7, and 6 volatile markers were chosen based on VIP values and S-plot among plant1 plant 2 and plant 3, respectively. The markers differed significantly between recycled rPET samples in three geographical recycling regions based on chemometrics analysis. The initial classification rate and cross-validation accuracy were 100% on the identified VCs. These significant differences demonstrate that a systematic study is needed to obtain a comprehensive data on the contamination of rPET for food contact applications in China.


Asunto(s)
Tereftalatos Polietilenos , Compuestos Orgánicos Volátiles , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Tereftalatos Polietilenos/química , Quimiometría , Microextracción en Fase Sólida/métodos , Etilenos , Compuestos Orgánicos Volátiles/análisis
9.
J Hazard Mater ; 423(Pt B): 127165, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844336

RESUMEN

A growing attention is attracted to the use of recycled plastics as food contact materials, and its chemical safety research and discrimination approach are indispensable. In current study, ultraviolet-visible spectrometry (UV-Vis) and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) were used to provide spectral and mass fingerprinting for polyethylene (PE). Coupling with chemometrics, two methods were developed to discriminate recycled and virgin PE. UV-Vis combined with chemometrics could be a more accessible, simpler and faster approach. 237-331 nm in UV spectrum was regarded as marker region selected by orthogonal partial least-squares discrimination analysis (OPLS-DA) and the accuracy of both calibration and validation set could reach 100% in linear discrimination analysis (LDA) based on this region. Besides, 2314 ions were detected by UPLC-Q-TOF-MS and processed by MS-DIAL. 48 candidate chemicals were identified, including ketone, esters, carboxylic acid, alcohols and phenols, amine, nitriles, aldehydes and others. Possible origins of these compounds could be classified as plastic, food, drug, cosmetics and pesticide related. Many of these compounds are highly toxic, especially pesticide related, indicating that recycling in closed loop or sorting by the recycled plastic articles is very necessary if the recycled PE is going to be used as food contact material.


Asunto(s)
Quimiometría , Polietileno , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Espectrometría de Masas
10.
Artículo en Inglés | MEDLINE | ID: mdl-34477493

RESUMEN

Chloropropanols such as 3-monochloropropane-1,2-diol (3-MCPD) and 1,3-dichloro-2-propanol (1,3-DCP) have drawn increasing attention due to their release from food contact paper and their potential carcinogenic effects. In this study, the effects were investigated of water extraction conditions on release of chloropropanols from food contact paper, and the extraction efficiencies of chloropropanols by water extract and migration method were compared. Cold water was found to be more severe than hot water for extraction of chloropropanols, with the highest water extraction value obtained at 23°C. Two hours of extraction was sufficient as the chloropropanols can be fully extracted from food contact paper within a short period of time. Increase of temperature in the range of 10°C-60°C had little impact on release of chloropropanols, however, the extraction of chloropropanols decreased when high temperatures (80°C or above) were applied due to volatilisation losses. Hence, attention should be paid when choosing extract conditions representing the worst-case scenario. The water extraction value using EN 645 method gives higher results compared to migration test described in GB 31604.1 and GB 5009.156, suggesting that the water extract method was probably more severe. For migration test, aqueous-based simulants were found to be more conservative than oil-based simulants, suggesting the conventional experiment conditions applicable for compliance test of chloropropanols migration can be simplified and optimised.


Asunto(s)
Análisis de los Alimentos , Contaminación de Alimentos/análisis , Papel , alfa-Clorhidrina/análogos & derivados , alfa-Clorhidrina/análisis , Cromatografía de Gases , Espectrometría de Masas en Tándem , Temperatura
11.
Artículo en Inglés | MEDLINE | ID: mdl-33818316

RESUMEN

To determine the occurrence of mineral oil hydrocarbons (MOH) in food contact papers in China, and to investigate the potential sources of MOH contamination, a total of 159 food contact papers and raw materials were analysed by off-line solid-phase extraction-gas chromatography flame ionisation detection (SPE-GC-FID) and a GC-MS method. The migration of MOH from food contact papers into Tenax, olive oil or 50% ethanol under the worst foreseeable conditions of use was determined. The results indicated that the occurrence of MOH in China is of a potential health risk concerning the migration of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) which were detected in 82.6% and 50.4% of samples, respectively. Migration of MOSH from 47.9% of samples was higher than 2 mg/kg and migration of MOAH from 32.2% samples exceeded 0.5 mg/kg in case of the worst foreseeable condition of use. The highest mean migration of MOSH and MOAH were found in packaging papers for long-term storage (more than 6 months), with mean migration of 91.2 mg/kg and 1.4 mg/kg, respectively. Migration of MOH from printed paper was considerably higher than that of unprinted paper, validating previous findings that the printing ink is the predominant source of MOH contamination in food contact papers. Migration of MOH from paper bowls used for packing instant noodles was relatively low, suggesting the internal hollow layer may be acting as a functional barrier that could block the transfer of MOH (up to C28) through the gas phrase, even though the outer layer was made from recycled paper. High concentrations of MOSH and MOAH were also detected in de-foamers, adhesives and rosin sizing agents, indicating that the MOH contamination caused by the use of raw materials and additives should also be taken into consideration.


Asunto(s)
Contaminación de Alimentos/análisis , Hidrocarburos/análisis , Aceite Mineral/análisis , China , Análisis de los Alimentos , Embalaje de Alimentos
12.
Talanta ; 202: 285-296, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171184

RESUMEN

Atmospheric pressure gas chromatography (APGC) coupled to quadrupole time-of-flight (QTOF) and electron ionization mass spectrometry together with commercial library search are two complementary techniques for non-target screening of volatile and semi-volatile compounds. Optimization was first conducted to achieve easier search of correspondent peaks between the two systems. Analytical strategy for the determination of volatile and semi-volatile compound with different identification confidence levels was then proposed and applied to food contact grade polypropylene (PP) samples. Identification was found to be much easier and less time-consuming especially when correspondent peak was found in the two systems with the help of library search, exact mass of precursor and fragment ions as well as Kovats Index (KI). The behavior of APGC-QTOF-MS was also further investigated. Apart from the M+. ion and the well-known adduct [M+H]+ others such as [M-3H + O]+, [M-3H+2O]+ and [M-H+3O]+ were also observed for n-alkanes. Besides, new reaction products were found, formed by diol compounds (1-Monostearoylglycerol, 2-Monostearoylglycerol and NX 8000K) and silanediol dimethyl, which would be a transformation product of the silicone base septum or the methyl 5% phenyl polysiloxane based column. These new compounds were only detected in APGC-MS-QTOF as EI-GC-MS was not enough sensitive for this purpose.

14.
Artículo en Inglés | MEDLINE | ID: mdl-27636863

RESUMEN

Three nanocopper/low-density polyethylene (LDPE) composite films were tested in food simulants (3% acetic acid and 10% ethanol) and real food matrices (rice vinegar, bottled water and Chinese liquor) to explore the behaviours of copper migration using ICP-OES and GFAAS. The effects of exposure time, temperature, nanocopper concentration and contact media on the release of copper from nanocopper/LDPE composite films were studied. It was shown that the migration of copper into 10% ethanol was much less than that into 3% acetic acid at the same conditions. With the increase of nanocopper concentration, exposure time and temperature, the release of copper increased. Copper migration does not appear to be significant in the case of bottled water and Chinese liquor compared with rice vinegar with a maximum value of 0.54 µg mL-1 for the CF-0.25# bags at 70°C for 2 h. The presence and morphology of copper nanoparticles in the films and the topographical changes of the films were confirmed by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). In this manner, copper nanoparticles of different morphologies, sizes and distribution were found, and samples with higher nanocopper concentration had a more irregular topography. In the case of Fourier transform infrared spectroscopy (FTIR), no chemical bonds formed between copper nanoparticles and LDPE. Copper nanoparticles were just as physically dispersed in LDPE.


Asunto(s)
Cobre/análisis , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Nanopartículas del Metal/química , Polietileno/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-24666013

RESUMEN

An analytical method based on ICP-MS was developed for the determination of Ti in food simulants (3% (w/v) aqueous acetic acid and 50% (v/v) aqueous ethanol). The method was used to determine the migration of Ti from nano-TiO2-PE films used for food packaging into food simulants under different temperature and migration time conditions. The maximum migration amounts into 3% (w/v) aqueous acetic acid were 1.4 ± 0.02, 6.3 ± 0.5 and 12.1 ± 0.2 µg kg(-1) at 25, 70 and 100°C, respectively, while into 50% (v/v) aqueous ethanol, the maximum migration amounts were 0.5 ± 0.1, 0.6 ± 0.03 and 2.1 ± 0.1 µg kg(-1) at 25, 70 and 100°C, respectively. Increasing the additive content in the film promoted migration of nanoparticles. The results indicated that the migration of nanoparticles might occur via dissolution from the surface and cut edges of the solid phase (film) into the liquid phase (food simulant).


Asunto(s)
Contaminación de Alimentos/análisis , Embalaje de Alimentos , Nanopartículas del Metal/química , Titanio/análisis , Ácido Acético , Etanol , Humanos , Límite de Detección , Espectrometría de Masas , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanocompuestos/química , Nanocompuestos/toxicidad , Nanocompuestos/ultraestructura , Tamaño de la Partícula , Polietileno , Titanio/toxicidad , Agua
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 26(1): 109-10, 116, 2006 Jan.
Artículo en Chino | MEDLINE | ID: mdl-16495190

RESUMEN

OBJECTIVE: To determine organochlorine pesticide residue in 9 Chinese herbs. METHODS: The organochlorine pesticides were extracted from the herbs with mixed solvents of n-hexane and acetone by a solid-phase extraction cartridge Florisil. Capillary gas chromatography was used to separate the samples. RESULTS: Good linearities were obtained for 11 organochlorine pesticides. The average recoveries at two concentration levels ranged from 79.9% to 89.0%,and from 86.3% to 104.8%, with relative standard deviations of 1.8% to 7.1%, respectively and detection limit of 2 g/kg. The residues of the organic pesticides exceeded national standard in Pogostemon cablin and Panax notoginseng. CONCLUSION: Capillary gas chromatography combined with electron capture detection provides a practical means for detecting organic pesticide residue in Chinese herbal medicines, and the limits of pesticide residues should be formulated in Chinese pharmacopoeia.


Asunto(s)
Contaminación de Medicamentos , Medicamentos Herbarios Chinos/química , Hidrocarburos Clorados/análisis , Residuos de Plaguicidas/análisis , Cromatografía de Gases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA