Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 187: 114345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763637

RESUMEN

Long-term consumption of Western-style diet (WSD) can lead to metabolic disorders and dysbiosis of gut microbiota, presenting a critical risk factor for various chronic conditions such as fatty liver disease. In the present study, we investigated the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus kisonensis on rats fed a WSD. Male Sprague-Dawley (SD) rats, aged six weeks and weighing 180 ± 10 g, were randomly assigned to one of three groups: the normal control group (NC, n = 7), the WSD group (HF, n = 7), and the WSD supplemented with a co-fermented whole grain quinoa with black barley (FQB) intervention group (HFF, n = 7). The findings indicated that FQB was effective in suppressing body weight gain, mitigating hepatic steatosis, reducing perirenal fat accumulation, and ameliorating pathological damage in the livers and testicular tissues of rats. Additionally, FQB intervention led to decreased levels of serum uric acid (UA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). These advantageous effects can be ascribed to the regulation of FQB on gut microbiota dysbiosis, which includes the restoration of intestinal flora diversity, reduction of the F/B ratio, and promotion of probiotics abundance, such as Akkermansia and [Ruminococcus] at the genus level. The study employed the UPLC-Q-TOF-MSE technique to analyze metabolites in fecal and hepatic samples. The findings revealed that FQB intervention led to a regression in the levels of specific metabolites in feces, including oxoadipic acid and 20a, 22b-dihydroxycholesterol, as well as in the liver, such as pyridoxamine, xanthine and xanthosine. The transcriptome sequencing of liver tissues revealed that FQB intervention modulated the mRNA expression of specific genes, including Cxcl12, Cidea, and Gck, known for their roles in anti-inflammatory and anti-insulin resistance mechanisms in the context of WSD. Our findings indicate that co-fermented whole-grain quinoa with black barley has the potential to alleviate metabolic disorders and chronic inflammation resulting from the consumption of WSD.


Asunto(s)
Chenopodium quinoa , Dieta Occidental , Fermentación , Microbioma Gastrointestinal , Hordeum , Lactobacillus , Ratas Sprague-Dawley , Animales , Hordeum/química , Masculino , Lactobacillus/metabolismo , Chenopodium quinoa/química , Ratas , Hígado/metabolismo , Disbiosis , Metabolómica , Alimentos Fermentados , Multiómica
2.
Food Funct ; 12(14): 6526-6539, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34095944

RESUMEN

A long-term high-fat (HF) diet can cause metabolic disorders, which might induce visceral obesity and ectopic triglyceride storage (e.g., hepatic steatosis), and increase hepatic oxidative stress. Oxidative stress plays a significant role in the development of complications associated with obesity. Fermented whole cereal foods exhibit healthy potential due to their unique phytochemical composition and the presence of probiotics. In the present study, the regular nutrients and phytochemicals of Lactobacillus-fermented black barley (Hordeum distichum L.) were analyzed. Further, the black barley fermentation broth (1 mL per 100 g BW per d, equivalent to 1 mL per kg BW of daily human intake) was administered orally to the rats fed on a high fat diet (HF). The anti-oxidative activity and hepatic metabolic profile of Lactobacillus-fermented black barley were investigated. The results showed that the fermentation processing significantly increased the contents of polyphenols (e.g., ferulic acid, etc.), flavonoids (e.g., flavone, etc.), vitamin B1 and B2, partial mineral elements (e.g., Ca, etc.), and thymine. Furthermore, compared to the HF-fed only rats, fermented black barley treatment significantly increased the activities of SOD (superoxide dismutase) and GSH-PX (glutathione peroxidase), and decreased the level of TBARS (thiobarbituric acid reactive substances) in serum, the levels of TG (triglyceride), TC (total cholesterol), NEFA (non-esterified fatty acid) in the liver, and the levels of TC, NEFA in the adipose tissue. This suggested the beneficial effects of fermented black barley on ameliorating oxidative stress and hepatic steatosis, which could be attributed to its regulatory role in the hepatic metabolism of glycerophospholipids, nicotinate and nicotinamide, glutathione, and nucleotide, and on the expression of genes related to oxidative stress (Heat shock protein 90 and reactive oxygen species modulator 1).


Asunto(s)
Hígado Graso/tratamiento farmacológico , Fermentación , Hordeum/metabolismo , Lactobacillus/metabolismo , Fitoquímicos/farmacología , Animales , Antioxidantes/farmacología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Flavonoides/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hordeum/química , Hígado/metabolismo , Masculino , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/química , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA