Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phytomedicine ; 132: 155818, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38879922

RESUMEN

BACKGROUND: The pathophysiology of Graves' disease (GD) involves imbalances between follicular helper T (Tfh) and follicular regulatory T (Tfr) cells, as well as oxidative stress (OS). Prunella vulgaris L. (Xia Ku Cao, XKC) and its primary bioactive compound, luteolin, are recognized for their potential in treating GD. Yet, the mechanism accounting for the immune-modulatory and antioxidant effects of XKC remains elusive. PURPOSE: This study aims to evaluate the pharmacological effects and elucidate the underlying mechanism of XKC and luteolin in a GD mouse model induced by recombinant adenovirus of TSH receptor A subunit (Ad-hTSHR-289). METHODS: High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (HPLC-QTOF MS) was used to detect the constituents of XKC. The GD model was established through inducing female BALB/c mice with three intramuscular injections of Ad-TSHR-289. Thyroid function, autoantibody and OS parameters were measured by ELISA. Changes of Tfh cells and Tfr cells were detected by flow cytometry. RT-qPCR, Western Blotting, immunohistochemistry were used to explore the related molecular mechanisms. RESULTS: A total of 37 chemical components from XKC were identified by HPLC-QTOF MS, represented by flavonoids, steroids, terpenoids, and luteolin. XKC and luteolin reduced T4, TRAb levels and facilitated the recovery from thyroid damage in GD mice. Meanwhile, XKC and luteolin effectively alleviated OS by decreasing the levels of MDA, NOX2, 4-HNE, 8-OHdG, while increasing GSH level. Flow cytometry showed that XKC and luteolin restored the abnormal proportions of Tfh/Tfr and Tfh/Treg, and the mRNA levels of IL-21, Bcl-6 and Foxp3 in GD mice. In addition, XKC and luteolin inhibited PI3K, Akt, p-PI3K and p-Akt, but activated Nrf2 and HO-1. CONCLUSION: XKC and luteolin could inhibit the development of GD in vivo by rebalancing Tfh/Tfr cells and alleviating OS. This therapeutic mechanism may involve the Nrf2/HO-1 and PI3K/Akt signaling pathways. Luteolin is the main efficacy material basis of XKC in countering GD. For the first time, we revealed the mechanism of XKC and luteolin in the treatment of GD from the perspective of autoimmune and OS.

2.
J Ethnopharmacol ; 329: 118130, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (Bu Gu Zhi) is the fruit of Psoralea corylifolia L. (PCL) and has been used for centuries in traditional Chinese medicine formulas to treat osteoporosis (OP). A new drug called "BX" has been developed from PCL, but its mechanism for treating OP is not yet fully understood. AIM OF THE STUDY: To explore the mechanism of action of BX in the treatment of ovariectomy-induced OP based function-oriented multi-omics analysis of gut microbiota (GM) and metabolites. MATERIALS AND METHODS: C57BL/6 mice were bilaterally ovariectomized to replicate the OP model. The therapeutic efficacy of BX was evaluated by bone parameters (BMD, BV/TV, Tb.N, Tb.Sp), hematoxylin and eosin (H&E) staining results, and determination of bone formation markers procollagen type Ⅰ amino-terminal peptide (PⅠNP) and bone-specific alkaline phosphatase (BALP). Serum and fecal metabolomics and high-throughput 16S rDNA sequencing were performed to evaluate effects on endogenous metabolites and GM. In addition, an enzyme-based functional correlation algorithm (EBFC) algorithm was used to investigate functional correlations between GM and metabolites. RESULTS: BX improved OP in OVX mice by increasing BMD, BV/TV, serum PⅠNP, BALP, and improving Tb.N and Tb.Sp. A total of 59 differential metabolites were identified, and 9 metabolic pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, purine metabolism, and tryptophan metabolism, were found to be involved in the progression of OP. EBFC analysis results revealed that the enzymes related to purine and tryptophan metabolism, which are from Lachnospiraceae_NK4A136_group, Blautia, Rs-E47_termite_group, UCG-009, and Clostridia_UCG-014, were identified as the intrinsic link between GM and metabolites. CONCLUSIONS: The regulation of GM and restoration of metabolic disorders may be the mechanisms of action of BX in alleviating OP. This research provides insights into the function-oriented mechanism discovery of traditional Chinese medicine in the treatment of OP.


Asunto(s)
Cumarinas , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Osteoporosis , Ovariectomía , Psoralea , Animales , Psoralea/química , Femenino , Osteoporosis/tratamiento farmacológico , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , Cumarinas/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Densidad Ósea/efectos de los fármacos , Metabolómica , Modelos Animales de Enfermedad , Frutas , Multiómica
3.
J Ethnopharmacol ; 324: 117753, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38218499

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: For numerous years, the Xiehuo Xiaoying decoction (XHXY), a traditional Chinese medicine formula, has demonstrated substantial promise in treating Graves' disease (GD) in clinical settings, showcasing significant potential. However, the therapeutic mechanism and efficacy material basis of XHXY remains obscure. AIM OF THE STUDY: This work aims to investigate the underlying mechanisms and to study the efficacy material basis of XHXY in anti-GD effect using a combination of TMT quantitative proteomics and molecular docking method. MATERIALS AND METHODS: GD model was initiated by administering Ad-TSH289. Subsequently, the mice underwent a four-week regimen that included oral gavage of XHXY at doses of 17 g/kg·d and 34 g/kg·d, along with intraperitoneal injections of Gentiopicroside (GPS). Utilizing the principles of pharmacological chemistry in traditional Chinese medicine, we employed high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS) to discern prescribed prototype composition of XHXY in serum samples from mouse. TMT proteomics research provided evidence of XHXY's putative targets and important pathways in vivo. The binding activity of probable action targets and prototype composition was detected by molecular docking. Finally, Immunohistochemistry (IHC) and TUNEL staining were used to verify the mechanism of XHXY and GPS in anti-GD. RESULTS: XHXY and GPS alleviated GD by ameliorating the pathological changes and reducing thyroxine and TRAb levels. In mouse serum, a total of 31 prototypical XHXY ingredients were detected, and the majority of these components were from monarch and minister medicine. Proteomics study results indicated that the XHXY may mainly regulate targets including FAS-associated death domain protein (FADD), Apolipoprotein C-III, etc. and main pathways are Apoptosis, Cholesterol metabolism, TNF signalling pathway, etc. Strong binding activity of the prototypical active ingredient and GPS towards FADD, Caspase 8, and Caspase 3 was demonstrated by molecular docking. XHXY and its primary component, GPS, elevated the expression of FADD, Caspase 8, and Caspase 3, and enhance apoptosis in thyroid cells, as lastly validated by TUNEL and IHC staining. CONCLUSIONS: XHXY exhibits a favorable therapeutic effect in treating GD by promoting apoptosis in thyroid cells through the upregulation of FADD, Caspase 8, and Caspase 3 expression. And GPS is the main efficacy material basis for its therapeutic effect in anti-GD.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad de Graves , Animales , Ratones , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Simulación del Acoplamiento Molecular , Proteómica , Enfermedad de Graves/tratamiento farmacológico , Enfermedad de Graves/metabolismo , Apoptosis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
Angew Chem Int Ed Engl ; 62(25): e202303315, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37073925

RESUMEN

Chemoselective terpolymerization can produce polymer materials with diverse compositions and sequential structures, and thus have attracted considerable attention in the field of polymer synthesis. However, the intrinsic complexity of three-component system also brings great chanllenge, in regard to the reactivity and selectivity of different monomers. Herein, we report the terpolymerization of CO2 /epoxide/anhydride by a binary organocatalytic C3 N3 -Py-P3 /TEB (triethylborane) system. Both the activity and chemoselectivity were highly dependent upon the molar ratio of C3 N3 -Py-P3 to TEB, and sequence-controlled poly(ester-carbonate) copolymers were readily synthesized through one-pot/one-step methodology by tuning the stoichiometric ratio of phosphazene/TEB. In particular, C3 N3 -Py-P3 /TEB with a molar ratio of 1/0.5 exhibited an unprecedentedly high chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CO2 /CHO. Thus, well-defined triblock polycarbonate-b-polyester-b-polycarbonate copolymers can be produced from the mixture of CO2 , CHO and PA using a bifunctional initiator. With C3 N3 -Py-P3 /TEB=1/1, tapered copolymers were obtained, while random copolymers with high content of polycarbonate (PC) were synthesized with further increasing the amount of TEB. The mechanism of the unexpected chemoselectivity was further investigated by DFT calculations.


Asunto(s)
Boranos , Dióxido de Carbono , Dióxido de Carbono/química , Polímeros/química , Carbonatos
5.
Angew Chem Int Ed Engl ; 62(23): e202300704, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36988016

RESUMEN

Despite the widespread success in the functionalization of C(sp2 )-H bonds, the deliberate functionalization of C(sp3 )-H bonds in a highly site- and stereoselective manner remains a longstanding challenge. Herein, we report an iridium/aluminum cooperative catalytic system that enables the ß-selective C-H borylation of saturated cyclic amines and lactams. Furthermore, we have accomplished an enantioselective variant using binaphthol-derived chiral aluminum catalysts to forge C-B bonds with high levels of stereocontrol. Computational studies suggest that the formation of a Lewis pair with the substrates is crucial to lower the energy of the transition state for the rate-determining reductive elimination step.

6.
J Ethnopharmacol ; 301: 115826, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36228893

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiehuo Xiaoying decoction (XHXY) has shown great potential in the treatment of GD, but its mechanism remains obscure. Increase of follicular helper T (Tfh) cells and reduction of follicular regulatory T (Tfr) cells contribute to a high thyrotropin receptor antibodies (TRAb) level and possible Graves' disease (GD). Oxidative stress (OS) disrupts T helper cell differentiation and aggravates autoimmunity. AIM OF THE STUDY: This study aimed to investigate whether XHXY decoction can ameliorate autoimmunity in GD via inhibiting OS and regulating Tfh and Tfr cells. MATERIALS AND METHODS: The main XHXY bioactive compounds were identified using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. GD was induced in the mice through three intramuscular injections of adenovirus expressing the TSH receptor. Then, the mice received oral gavage of XHXY (17 g/kg·d) and 34 g/kg·d) for 4 weeks. OS indicators were assessed. Flow cytometry was used to confirm the proportion of Tfh and Tfr cells in the lymph nodes and spleens of the mice. Cytokine expression levels were determined using enzyme-linked immunosorbent assay. Factors including interleukin-21, B-cell lymphoma-6, and forkhead box P3 (Foxp3) were detected using quantitative polymerase chain reaction. The mRNA and protein expression levels of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid-2-related factor 2 (Nrf2), and haem oxygenase 1 (HO-1) were detected using quantitative polymerase chain reaction and Western blotting, respectively. RESULTS: Twelve main ingredients of XHXY were identified. XHXY relieved GD by lowering thyroxine (p < 0.01) and TRAb levels (p < 0.01). XHXY ameliorated OS by decreasing the levels of NADPH oxidase 2 (p < 0.05), 4-hydroxynonenal (p < 0.01), and 8-oxo-2'-deoxyguanosine (p < 0.001). It inhibited Tfh cell expansion (p < 0.05), as well as the production of cytokine interleukin -21 (p < 0.01), interleukin -4 (p < 0.01) and transcription factor B-cell lymphoma 6 (p < 0.05). XHXY also induced Tfr cell amplification (p < 0.05), increased the production of interleukin -10 (p < 0.05) and transforming growth factor ß (p < 0.05) and the mRNA levels of Foxp3 (p < 0.05). Finally, the Tfh/Tfr ratio returned to normal. In addition, XHXY activated Nrf2 and HO-1 expression, but inhibited Keap1 activation. CONCLUSIONS: XHXY relieves autoimmunity in GD via inhibiting Tfh cell amplification and Tfr cell reduction, a mechanism which probably involves the Keap1/Nrf2 signaling pathway.


Asunto(s)
Enfermedad de Graves , Linfoma de Células B , Animales , Ratones , Citocinas/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Enfermedad de Graves/tratamiento farmacológico , Enfermedad de Graves/metabolismo , Interleucinas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Linfoma de Células B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/metabolismo , Células T Auxiliares Foliculares , Linfocitos T Colaboradores-Inductores , Linfocitos T Reguladores , Medicina Tradicional China
7.
Chem Sci ; 13(45): 13617-13622, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507178

RESUMEN

ortho-Alkynyl quinone methides are well-known four-atom synthons for direct [4 + n] cycloaddition in constructing useful oxa-heterocyclic compounds owing to their high reactivity as well as the thermodynamically favored aromatization nature of this process. Herein we report an operationally simple and eco-friendly protocol for the modular and regioselective access of (E)-4-(vinyl or aryl or alkynyl)iminochromenes from propargylamines and S-methylated ß-ketothioamides in the presence of FeCl3, and particularly under undried acetonitrile and air atmosphere conditions. This method exhibits a broad substrate scope and displays nice functional group compatibility, thus providing an efficient access of 3,4-disubstituted iminochromenes.

8.
J Org Chem ; 87(23): 16039-16046, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379013

RESUMEN

Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.


Asunto(s)
Fluorobencenos , Paladio , Paladio/química , Modelos Moleculares , Ligandos
9.
Org Lett ; 24(37): 6805-6809, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36098713

RESUMEN

A redox-neutral benzylic C-O cyclization under beneficial transition-metal-free conditions is reported. Key to the success of this process is the utilization of the Tf anion as the leaving group for achieving the redox-neutral transformation. This protocol delivers a series of captivating helical compounds having various functionality in good-to-excellent yields. It is particularly noteworthy that sterically hindered helical compounds are conformationally stable. In addition to simple helical chromenes, the bihelical multiple-ring systems which are potentially useful in material chemistry are also easily attained by employing this method. DFT calculation revealed that quinone intermediate is the key species, among four possible mechanisms, for accomplishing the desired cyclization via an oxa-6π-electrocyclization pathway.

10.
J Am Chem Soc ; 144(32): 14864-14873, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921609

RESUMEN

Biaryl phosphines bearing C(Ar)-C(Ar) axial chirality are commonly known and have been successfully applied in many asymmetric catalyses. Nevertheless, the development of a chiral ligand having an axially chiral C(Ar)-N backbone remains elusive due to its undesirable less restricted rotational barrier. In fact, it is highly attractive to overcome this challenge in ligand development as the incorporation of an N-donor component at the chiral axis is more favorable toward the transient metal coordination, and thus, a better outcome of stereocommunication is anticipated to the approaching substrates. Herein, we present a rational design of a new collection of chiral phosphines featuring a C-N axial chirality and their applications in enantioselective Suzuki-Miyaura cross-coupling for accessing highly steric hindered tetra-ortho-substituted biaryls (26 examples up to 98:2 er). It is worth noting that the embodied carbazolyl framework is crucial to succeed the reaction, by the fruitful steric relief of bulky substrate coordination and transmetalation via a fleeting Pd-N jumping to Pd-π fashion. DFT calculation reveals an interesting Pd-arene-walking characteristic across the carbazolyl plane for attaining a lower energy-preferred route in a catalytic cycle. The theoretical study successfully predicts the stereooutcome and matches the enantioselectivity with the experimental results.


Asunto(s)
Fosfinas , Catálisis , Ligandos , Estereoisomerismo
11.
Org Lett ; 23(16): 6520-6524, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34369777

RESUMEN

A [2+2+1]-NO-segment-incorporating heteroannulative cascade is described. This versatile method, particularly using modular cyanoarylated ketimine substrates, allows efficient access to structurally diversified quinolines embedded with an oxadiazole core. This metal-free protocol proceeds smoothly at 30 °C, offers easy manipulation of substituents on the quinoline moiety, and tolerates a spectrum of functional groups. Density functional theory calculation revealed that the cyano moiety is crucial to facilitate the early cyclization step in this heteroannulation process and is different from the previously established late cyclization mechanistic interpretation.

12.
Small ; 17(20): e2100762, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33817965

RESUMEN

In this work, by combining the superiority of polyoxometalates (POMs) and catalytic single-metal site Co of metalloporphyrin, a series of mixed-valence POM-based metal-organic frameworks (MOFs) composites is synthesized by a post-modification method. The electron-transfer property of POM@PCN-222(Co) composite is significantly enhanced owing to the directional electron-transfer from POM to single-metal site Co in PCN-222(Co). In particular, H-POM@PCN-222(Co) gives a high Faradaic efficiency of 96.2% for electroreduction of CO2 into CO and good stability over 10 h. DFT calculations confirm that the directional electron transfer, which accelerates the multi-electron transfer from the electrode to active single-metal site Co, enriches the electron density of the Co center, and ultimately reduces the energy of the rate-determining step, thus increasing the catalytic activity of CO2 reduction reaction (CO2 RR). This work therefore suggests some new insight for the design of efficient electrocatalysts for CO2 RR.

13.
ACS Cent Sci ; 7(1): 175-182, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33532578

RESUMEN

The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.

14.
Chem Sci ; 12(47): 15588-15595, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-35003588

RESUMEN

Engineering the preorganization of photoactive units remains a big challenge in solid-state photochemistry research. It is of not only theoretical importance in the construction of topochemical reactions but also technological significance in the fabrication of advanced materials. Here, a cyanostilbene derivative, (Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(naphthalen-2-yl) acrylonitrile (BNA), was crystallized into two polymorphs under different conditions. The two crystals, BNA-α and BNA-ß, have totally different intra-π-dimer and inter-π-dimer hierarchical architectures on the basis of a very simple monomer, which provides them with distinct reactivities, functions and photoresponsive properties. Firstly, two different types of solid-state [2 + 2] photocycloaddition reaction: (i) a typical olefin-olefin cycloaddition reaction within the symmetric π-dimers of BNA-α and (ii) an unusual olefin-aromatic ring cycloaddition reaction within the offset π-dimers of BNA-ß have been observed, respectively. Secondly, the crystal of BNA-α can be bent to 90° without any fracture, exhibiting outstanding flexibility upon UV irradiation, while the reversible photocycloaddition/thermal cleavage process (below 100 °C) accompanied by unique fluorescence changes can be achieved in the crystal of BNA-ß. Finally, micro-scale photoactuators and light-writable anti-counterfeiting materials have been successfully fabricated. This work paves a simple way to construct smart materials through a bottom-up way that is realized by manipulating hierarchical architectures in the solid state.

15.
Am J Chin Med ; 48(7): 1593-1616, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33148008

RESUMEN

Spinal cord injury (SCI) is a catastrophic disease associated with damaged neurological structures and has become a significant social and economic burden for the health care system and patients' families. The use of Chinese Herbal Medicine (CHM) to treat SCI has been increasing in recent years. This meta-analysis aimed to investigate the effectiveness of CHM for patients with SCI. Therefore, we included randomized controlled trials (RCTs) of CHM for SCI in seven databases. A total of 26 studies involving 1961 participants were included in this study. No serious heterogeneity or publication bias was observed across each study. The results showed that significant improvements of the American Spinal Injury Association (ASIA)-grading improvement rate ([Formula: see text], [Formula: see text]), clinical effective rate ([Formula: see text], [Formula: see text]), ASIA motor score ([Formula: see text], [Formula: see text]), ASIA sensory score (total) ([Formula: see text], [Formula: see text]), ASIA sensory score (light touch) ([Formula: see text], [Formula: see text]), ASIA sensory score (pinprick) ([Formula: see text], [Formula: see text]), and activities of daily living (ADL) score ([Formula: see text], [Formula: see text]) in CHM group compared with the control group. Among the CHM groups, Buyang Huanwu decoction was the most frequently prescribed herbal formula, while Astragalus membranaceus was the most commonly used single herb. In addition, there were no serious and permanent adverse effects in the two groups. The methodological quality of the most included RCTs was poor and the quality of evidence for the main outcomes was from very low to moderate according to the GRADE system. Current evidence suggests that CHM is an effective and safe treatment for SCI and could be treated as a complementary and alternative option with few side effects. However, considering the low quality, small size, and high risk of the studies identified in this meta-analysis, higher methodological quality, rigorously designed RCTs with large sample sizes are needed to confirm the results.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Fitoterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Traumatismos de la Médula Espinal/tratamiento farmacológico , Actividades Cotidianas , Astragalus propinquus , Femenino , Humanos , Masculino , Extractos Vegetales/uso terapéutico , Seguridad , Sensación , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
16.
J Am Chem Soc ; 142(39): 16732-16747, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32894944

RESUMEN

Methane borylation catalyzed by Cp*M(Bpin)n (M = Ru or Rh; HBpin = pinacolborane; n = 2 or 3) and (TMPhen)Ir(Bpin)3 (TMPhen = 3,4,7,8-tetramethyl-1,10-phenanthroline) was investigated by DFT in comparison with cyclohexane borylation. Because Ru-catalyzed borylation has not been theoretically investigated yet, its reaction mechanism was first elucidated; Cp*Ru(Bpin)3 1-Ru is an active species, and Cp*Ru(Bpin)3(H)(CH3) 4-Ru is a key intermediate. In 4-Ru, the Ru is understood to have an ambiguous oxidation state between +IV and +VI because it has a H··Bpin bonding interaction with a bond order of about 0.5. Methane borylation occurs through oxidative addition of methane C-H bond followed by reductive elimination of borylmethane in all of these catalysts. The catalytic activity for methane borylation increases following the order Cp*Ru(Bpin)3 < (TMPhen)Ir(Bpin)3 < Cp*Rh(Bpin)2. Cyclohexane borylation occurs in the same mechanism except for the presence of isomerization of a key intermediate. Chemoselectivity of methane over cyclohexane increases following the order Ir < Ru < Rh. In all of these catalysts, the rate-determining step (RDS) of cyclohexane borylation needs a larger ΔG°‡ than the RDS of methane borylation because the more bulky cyclohexyl group induces larger steric repulsion with the ligand than methyl. One reason for the worse chemoselectivity of the Ir catalyst is its less congested transition state of the reductive elimination of borylcyclohexane. Herein, use of a strongly electron-donating ligand consisting of pyridine and N-heterocyclic carbene with bulky substituents is computationally proposed as a good ligand for the Ir catalyst; actually, the Ir complex of this ligand is calculated to be more active and more chemoselective than Cp*Rh(Bpin)2 for methane borylation.

17.
Chem Commun (Camb) ; 56(66): 9529-9532, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32687138

RESUMEN

The efficient regioselective C-H cyanoalkoxylation and cyanoalkylation of 8-aminoquinoline derivatives at the C5 position have been achieved under O2 and N2 atmospheres, respectively. Using 2,2'-azobisisobutyronitrile (AIBN) as a radical precursor, the protocols afforded the corresponding products in moderate to good yields with broad substrate generality through Cu(OAc)2 or NiSO4 catalysis. Furthermore, the single electron transfer (SET) mechanism was proposed via a radical coupling pathway.

18.
Chemistry ; 26(47): 10891-10895, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32297691

RESUMEN

Complexes containing odd-electron Be-Be bonds are still rare until now. Hereby, a series of neutral di-beryllium amidinate complexes containing a Be-Be bond were explored theoretically. The complexes with direct chelation with the Be2 dimer by the bidentate amidinate (AMD) ligands are always corresponding to their global minimum structures. The detailed bonding analyses reveal that the localized electrons of the Be-Be fragment can be adjusted by the amount of AMD ligands because each AMD ligand only takes one electron from the Be2 fragment. Meanwhile, the hybridization of the central Be atom also changes as the number of AMD ligands increases. In particular, the sp3 -hybridized single-electron Be-Be bond is firstly identified in the tri-AMD-ligands-chelated neutral D3h -Be2 (AMD)3 complex, which also possesses the higher stability compared to its monoanionic D3h -Be2 (AMD)3 - and monocationic C3 -Be2 (AMD)3 + analogues. Importantly, our study provides a new approach to obtain a neutral odd-electron Be-Be bond, namely by the use of radical ligands through side-on chelation.

19.
Chemphyschem ; 21(5): 459-463, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-31867837

RESUMEN

Zn=Zn double bonded-especially double-π bonded-systems are scarce due to strong Coulomb repulsion caused by the Zn atom's internally crowded d electrons and very high energy of the virtual π orbitals in Zn2 fragments. It is also rare for Zn atoms to exhibit negative oxidation states within reported Zn-Zn bonded complexes. Herein, we report Zn=Zn double-π bonded octahedral clusters Zn2 M4 (M=Li, Na) bridged by four alkali metal ligands, in which the central Zn atom is in a negative oxidation state. Especially in D4h -Zn2 Na4 , the natural population analysis shows that the charge of the Zn atom reaches up to -0.89 |e| (-1.11 |e| for AIM charge). Although this cooperation inevitably increases the repulsion between two Zn atoms, the introduction of the s1 -type ligands results in occupation of degenerated π orbitals and the electrons being delocalized over the whole octahedral framework as well, in turn stabilizing the octahedral molecular structure. This study demonstrates that maintaining the degeneracy of the π orbitals and introducing electrons from equatorial plane are effective means to construct double-π bonds between transitional metals.

20.
Dalton Trans ; 48(39): 14590-14594, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31535108

RESUMEN

Herein, we presented a series of Be2X4Y2 clusters (X = Li, Na and Y = Li, Na, K) containing Be[triple bond, length as m-dash]Be triple bonds, which were constructed by six alkali metals as electron-donating ligands. By virtue of the electrostatic potential mapping of the precedent Be[double bond, length as m-dash]Be double-π bonded D4h-Be2X4 clusters, the Be2X4Y2trans-bent geometries and the Be[triple bond, length as m-dash]Be triple bonds inside were both well interpreted. More remarkably, we first identified a perfect classical Be[triple bond, length as m-dash]Be triple bond in D4h-Be2Na4K2 and its Wiberg bond index of Be-Be (WBIBe-Be) reached up to 2.43. Meanwhile, our strategy provides a new approach to explain the trans-bent structure caused by terminal coordination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA