Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
Antiviral Res ; 231: 106007, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299548

RESUMEN

Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infections, particularly in vulnerable populations such as neonates, infants, young children, and the elderly. Among infants, RSV is the primary cause of bronchiolitis and pneumonia, contributing to a notable proportion of child mortality under the age of 5. In this study, we focused on investigating the pathogenicity of a lethal RSV strain, GZ08-18, as a model for understanding mechanisms of hypervirulent RSV. Our findings indicate that the heightened pathogenicity of GZ08-18 stems from compromised activation of intrinsic apoptosis, as evidenced by aberration of mitochondrial membrane depolarization in host cells. We thus hypothesized that enhancing intrinsic apoptosis could potentially attenuate the virulence of RSV strains and explored the effects of Rotenone, a natural compound known to stimulate the intrinsic apoptosis pathway, on inhibiting RSV infection. Our results demonstrate that Rotenone treatment significantly improved mouse survival rates and mitigated lung pathology following GZ08-18 infection. These findings suggest that modulating the suppressed apoptosis induced by RSV infection represents a promising avenue for antiviral intervention strategies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39260617

RESUMEN

Low-temperature stress poses a significant risk to the survival of both cultivated and wild fish populations. Existing studies have found that the pre-acclimation of fishes to moderate cold stress can stimulate the activation of acclimation pathways, thereby enhancing their tolerance to cold stress. The fitness of fish relies heavily on appropriately controlled transcriptional reactions to environmental changes. Despite previous characterization of gene expression profiles in various fish species during cold acclimation, the specific genes responsible for essential functions in this process remain largely unknown, particularly the down-regulated genes induced by cold acclimation. To investigate the genes involved in cold acclimation, this study employed real-time quantitative PCR (RT-qPCR), molecular cloning, microinjection techniques, and cold stress experiments to determine the genes that play an essential part in cold acclimation. Consequently, 18 genes were discovered to be down-regulated in larval zebrafish experiencing cold stress. All 18 genes successfully detected overexpression in zebrafish at 96 and 126 hpf (fold change ≥3), which declined with the growth of zebrafish. Following microinjection, it was observed that her8a, cyp51, lss, txnipb, and bhlha9 had an adverse impact on the survival rate of zebrafish larvae under cold stress. These genes have been identified to play significant roles in various biological processes. For instance, bhlha9 has been found to be involved in both limb development and temperature sensing and her8a has been implicated in neural development. Additionally, cyp51 and lss have been identified as participants in the cholesterol synthesis pathway. Txnipb has been reported to induce cell apoptosis, thereby potentially influencing the survival rate of zebrafish larvae under cold stress. These findings offered crucial data for the analysis of molecular processes related to cold tolerance and the development of cold-resistant fish breeding.

3.
World J Surg Oncol ; 22(1): 243, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256855

RESUMEN

OBJECTIVE: To investigate the relationship between the expression of androgen receptor (AR) and clinical characteristics in breast cancer. PATIENTS AND METHODS: The clinical records of all 432 patients tested for AR in our institution between January 2020 and May 2023 were reviewed. Clinical characteristics, age, menopausal status, tumor node metastasis (TNM) stage, distant metastasis, pathological complete response (pCR), histopathological features histological grade, estrogen receptor (ER), progesterone receptor, Her-2, Ki-67, and molecular subtype were registered for all patients. RESULTS: About 377 (87.27%) of the 432 patients had AR expression. No significant difference in AR expression was found with age, menopausal status, TNM stage of primary tumor, or pCR. AR was positively and significantly associated with the histological grade, and recurrence. The AR expression was significantly related with molecular subtypes, including ER, PR Her-2, Ki67 and molecular subtype. ER (OR = 10.489, 95%CI: 5.470-21.569), PR (OR = 7.690, 95%CI: 3.974-16.129, Her-2 (OR = 10.489, 95%CI: 2.779-23.490 and tumor recurrence (OR = 0.110, 95%CI: 0.031-0.377 were significant independent risk factors affecting AR expression. CONCLUSIONS: AR expression can serve as a reliable basis for judging the clinical molecular types and poor prognosis for breast cancer. AR may be a novel biomarker and target in AR-positive breast cancer depending on significant difference in AR expression among different molecular types of breast cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Recurrencia Local de Neoplasia , Receptor ErbB-2 , Receptores Androgénicos , Receptores de Estrógenos , Receptores de Progesterona , Humanos , Receptores Androgénicos/metabolismo , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Pronóstico , Adulto , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Receptores de Estrógenos/metabolismo , Estudios de Seguimiento , Anciano , Estudios Retrospectivos , Metástasis Linfática , Estadificación de Neoplasias , Clasificación del Tumor , Anciano de 80 o más Años
4.
Biomed Opt Express ; 15(8): 4438-4452, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39347010

RESUMEN

Coronary artery calcification (CAC) is a marker of atherosclerosis and is thought to be associated with worse clinical outcomes. However, evidence from large-scale high-resolution imaging data is lacking. We proposed a novel deep learning method that can automatically identify and quantify CAC in massive intravascular OCT data trained using efficiently generated sparse labels. 1,106,291 OCT images from 1,048 patients were collected and utilized to train and evaluate the method. The Dice similarity coefficient for CAC segmentation and the accuracy for CAC classification are 0.693 and 0.932, respectively, close to human-level performance. Applying the method to 1259 ST-segment elevated myocardial infarction patients imaged with OCT, we found that patients with a greater extent and more severe calcification in the culprit vessels were significantly more likely to have major adverse cardiovascular and cerebrovascular events (MACCE) (p < 0.05), while the CAC in non-culprit vessels did not differ significantly between MACCE and non-MACCE groups.

5.
Int J Biol Macromol ; 278(Pt 3): 134671, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151856

RESUMEN

Phytophthora capsici, a pathogenic oomycete, poses a serious threat to global vegetable production. This study investigated the role of protein arginine methylation, a notable post-translational modification, in the epigenetic regulation of P. capsici. We identified and characterized five protein arginine methyltransferases (PRMTs) in P. capsici, with a focus on four putative type I PRMTs exhibiting similar functional domain. Deletion of PcPRMT3, a homolog of PRMT3, significantly affected mycelial growth, asexual spore development, pathogenicity, and stress responses in P. capsici. Transcriptome analyses indicated that absence of PcPRMT3 disrupted multiple biological pathways. The PcPRMT3 deletion mutant displayed heightened susceptibility to oxidative stress, correlated with the downregulation of genes involved in peroxidase and peroxisome activities. Additionally, PcPRMT3 acted as a negative regulator, modulating the transcription levels of specific elicitins, which in turn affects the defense response of host plant against P. capsici. Furthermore, PcPRMT3 was found to affect global arginine methylation levels in P. capsici, implying potential alterations in the functions of its substrate proteins.


Asunto(s)
Phytophthora , Enfermedades de las Plantas , Proteína-Arginina N-Metiltransferasas , Phytophthora/patogenicidad , Phytophthora/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Enfermedades de las Plantas/microbiología , Arginina/metabolismo , Estrés Oxidativo/genética , Metilación
6.
Sci Total Environ ; 951: 175512, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151629

RESUMEN

Prometryn is commonly used in agricultural and non-agricultural settings. However, possible harm to aquatic organisms remains a persistent concern. Prometryn was also the only one of the 26 triazine herbicides detected in this study. Numerous studies have assessed the harmful effects of prometryn in teleost fish and shrimp. There is a lack of information regarding the ecological and human health risks, as well as the toxic mechanisms affecting crayfish. In this study, human health risk assessment (THQ) and ecological risk assessment (RQ) were conducted on P. clarkii in the rice-crayfish co-culture (IRCC) farming model. The 96 h of exposure to 0.286 mg/L and 1.43 mg/L prometryn was conducted to investigate the potential effects and molecular mechanisms of hepatopancreatic resistance to prometryn in P. clarkii. The original sample analysis revealed that the THQ calculated from the prometryn levels in the muscle and hepatopancreas was below 0.1, suggesting no threat to human health. However, the calculated RQ values were >0.1, indicating a risk to P. clarkii. Histological analysis and biochemical index detection of the experimental samples revealed that the hepatopancreatic injury and oxidative damage in P. clarkii were caused by prometryn. Moreover, transcriptome analysis identified 2512 differentially expressed genes (DEGs) after 96 h of prometryn exposure. Prometryn exposure caused significant changes in metabolic pathways, including oxoacid metabolic processes and cytochrome P450-associated drug metabolism. Further hub gene analysis via PPI indicated that exposure to prometryn may inhibit lipid synthesis, storage, and amino acid transport and affect glucose metabolic pathways and hormone synthesis. Additionally, we hypothesized that prometryn-triggered cell death could be linked to the PI3K-Akt signaling cascade. This study's findings have significant meaning for the efficient and logical application of herbicides in IRCC, ultimately aiding in advancing a highly productive agricultural system.


Asunto(s)
Astacoidea , Herbicidas , Prometrina , Contaminantes Químicos del Agua , Astacoidea/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Herbicidas/toxicidad , Medición de Riesgo , Prometrina/toxicidad
7.
Front Pharmacol ; 15: 1466578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206258

RESUMEN

Artemisia annua L. is the main source of artemisinin, an antimalarial drug. High diversity of morphological characteristics and artemisinin contents of A. annua has affected the stable production of artemisinin while efficient discrimination method of A. annua strains is not available. The complete chloroplast (cp) genomes of 38 A. annua strains were assembled and analyzed in this study. Phylogenetic analysis of Artemisia species showed that distinct intraspecific divergence occurred in A. annua strains. A total of 38 A. annua strains were divided into two distinct lineages, one lineage containing widely-distributed strains and the other lineage only containing strains from northern China. The A. annua cp genomes ranged from 150, 953 to 150, 974 bp and contained 131 genes, and no presence or absence variation of genes was observed. The IRs and SC junctions were located in rps19 and ycf1, respectively, without IR contraction observed. Rich sequence polymorphisms were observed among A. annua strains, and a total of 60 polymorphic sites representing 14 haplotypes were identified which unfolding the cpDNA heteroplasmy of A. annua. In conclusion, this study provided valuable resource for A. annua strains identification and provided new insights into the evolutionary characteristics of A. annua.

8.
Environ Pollut ; 358: 124497, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964645

RESUMEN

Beryllium-containing sludge (BCS) is a byproduct of the physicochemical treatment of beryllium smelting wastewater. The pollutant element beryllium within BCS is highly unstable and extremely toxic, characterized by its small ionic radius and low charge density, resulting in a high risk of leaching and migration. This study is the first to investigate the leaching behavior, influencing mechanisms, and kinetic processes of beryllium in BCS under various environmental conditions. The results indicate that, under national standard conditions, beryllium exhibits a rapid leaching phase within the first 5 h, which then stabilizes after 10 h, with the total leached content significantly exceeding the leaching toxicity identification standards. Under mildly acidic (pH ≤ 5) or highly alkaline (pH = 14) conditions, beryllium demonstrates pronounced leaching and migration behaviors. Notably, in acidic conditions, the leaching rate exceeds 80% within 5 h. Combining the treatment process of beryllium-containing wastewater with analytical methods such as SEM, XPS, ToF-SIMS, and FTIR, it is revealed that due to the heterogeneous nature of BCS, the particle aggregates dissociate over time under acidic conditions. The particle surfaces become increasingly rough, leading to dissolution and the emergence of more reactive sites, resulting in a high proportion of beryllium leaching. Under these conditions, the gradual reaction of Be(OH)2 in BCS to form soluble Be2+ and its hydrolytic complexes is identified as the primary mechanism for extensive beryllium migration. The process encounters minimal diffusion resistance and is classified as reaction-controlled. In acidic conditions with pH = 4, the leaching rate of beryllium significantly increases with rising temperature. The leaching kinetics equation is [(1-x)-0.44]=e(18.26-53050RT)·t, with an apparent activation energy of 53.05 kJ mol-1.


Asunto(s)
Berilio , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Berilio/química , Cinética , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
9.
Comput Struct Biotechnol J ; 23: 2754-2762, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39050783

RESUMEN

Altered cell-cell communication is a hallmark of aging, but its impact on bone marrow aging remains poorly understood. Based on a common and effective pipeline and single-cell transcriptome sequencing, we detected 384,124 interactions including 2575 ligand-receptor pairs and 16 non-adherent bone marrow cell types in old and young mouse and identified a total of 5560 significantly different interactions, which were then verified by flow cytometry and quantitative real-time PCR. These differential ligand-receptor interactions exhibited enrichment for the senescence-associated secretory phenotypes. Further validation demonstrated supplementing specific extracellular ligands could modify the senescent signs of hematopoietic stem cells derived from old mouse. Our work provides an effective procedure to detect the ligand-receptor interactions based on single-cell sequencing, which contributes to understand mechanisms and provides a potential strategy for intervention of bone marrow aging.

10.
Redox Biol ; 75: 103267, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39025016

RESUMEN

Ferroptosis, driven by an imbalance in redox homeostasis, has recently been identified to regulate macrophage function and inflammatory responses. SENP3 is a redox-sensitive de-SUMOylation protease that plays an important role in macrophage function. However, doubt remains on whether SENP3 and SUMOylation regulate macrophage ferroptosis. For the first time, the results of our study suggest that SENP3 sensitizes macrophages to RSL3-induced ferroptosis. We showed that SENP3 promotes the ferroptosis of M2 macrophages to decrease M2 macrophage proportion in vivo. Mechanistically, we identified the ferroptosis repressor FSP1 as a substrate for SUMOylation and confirmed that SUMOylation takes place mainly at its K162 site. We found that SENP3 sensitizes macrophages to ferroptosis by interacting with and de-SUMOylating FSP1 at the K162 site. In summary, our study describes a novel type of posttranslational modification for FSP1 and advances our knowledge of the biological functions of SENP3 and SUMOylation in macrophage ferroptosis.


Asunto(s)
Cisteína Endopeptidasas , Ferroptosis , Macrófagos , Sumoilación , Animales , Humanos , Ratones , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Macrófagos/metabolismo , Procesamiento Proteico-Postraduccional
11.
Mod Pathol ; 37(8): 100536, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852815

RESUMEN

ALK-rearranged renal cell carcinoma (ALK-RCC) is rare, molecularly defined RCC subtype in the recently published fifth edition of World Health Organization classification of tumors. In this study, we described 9 ALK-RCCs from a clinicopathologic, immunohistochemical, and molecular genetic aspect, supporting and extending upon the observations by previous studies regarding this rare subgroup of RCC. There were 6 male and 3 female patients with ages ranging from 14 to 59 years (mean, 34.4 years). None of the patients had sickle cell trait. The diagnosis was based on radical or partial nephrectomy specimen for 8 patients and on biopsy specimen for 1. Tumor size ranged from 2.5 to 7.2 cm (mean, 2.8 cm). Follow-up was available for 6 of 9 patients (6-36 months); 5 had no tumor recurrence or metastasis and 1 developed lung metastasis at 24 months. The patient was subsequently treated with resection of the metastatic tumor followed by crizotinib-targeted therapy, and he was alive without tumor 12 months later. Histologically, the tumors showed a mixed growth of multiple patterns, including papillary, solid, tubular, tubulocystic, cribriform, and corded, often set in a mucinous background. The neoplastic cells had predominantly eosinophilic cytoplasm. Focally, clear cytoplasm with polarized nuclei and subnuclear vacuoles (n = 1), and pale foamy cytoplasm (n = 1) were observed on the tumor cells. The biopsied tumor showed solid growth of elongated tubules merging with bland spindle cells. Other common and uncommon features included psammomatous microcalcifications (n = 5), rhabdoid cells (n = 4), prominent intracytoplasmic vacuoles (n = 4), prominent chronic inflammatory infiltrate (n = 3), signet ring cell morphology (n = 2), and pleomorphic cells (n = 2). By immunohistochemistry, all 9 tumors were diffusely positive for ALK(5A4) and 4 of 8 tested cases showed reactivity for TFE3 protein. By fluorescence in situ hybridization analysis, ALK rearrangement was identified in all the 9 tumors; none of the tested tumors harbored TFE3 rearrangement (0/4) or gains of chromosomes 7 and 17 (0/3). ALK fusion partners were identified by RNA-sequencing in all 8 cases analyzed, including EML4 (n = 2), STRN (n = 1), TPM3 (n = 1), KIF5B (n = 1), HOOK1 (n = 1), SLIT1 (n = 1), and TPM1(3' UTR) (n = 1). Our study further expands the morphologic and molecular genetic spectrum of ALK-RCC.


Asunto(s)
Quinasa de Linfoma Anaplásico , Carcinoma de Células Renales , Reordenamiento Génico , Neoplasias Renales , Proteínas Tirosina Quinasas Receptoras , Humanos , Masculino , Quinasa de Linfoma Anaplásico/genética , Persona de Mediana Edad , Femenino , Neoplasias Renales/genética , Neoplasias Renales/patología , Adulto , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Adolescente , Adulto Joven , Proteínas Tirosina Quinasas Receptoras/genética , Inmunohistoquímica , Biomarcadores de Tumor/genética , Hibridación Fluorescente in Situ , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética
12.
Front Genet ; 15: 1296533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919951

RESUMEN

Small RNAs (sRNAs) are important non-coding RNA regulators that play key roles in the development and pathogenesis of plant pathogens, as well as in other biological processes. However, whether these abundant and varying sRNAs are involved in Phytophthora development or infection remains enigmatic. In this study, sRNA sequencing of 4 asexual stages of Phytophthora capsici (P. capsici), namely, as mycelia (HY), sporangia (SP), zoospores (ZO), cysts (CY), and pepper infected with P. capsici (IN), were performed, followed by sRNA analysis, microRNA (miRNA) identification, and miRNA target prediction. sRNAs were mainly distributed at 25-26 nt in HY, SP, and ZO but distributed at 18-34 nt in CY and IN. 92, 42, 176, 39, and 148 known miRNAs and 15, 19, 54, 13, and 1 novel miRNA were identified in HY, SP, ZO, CY, and IN, respectively. It was found that the expression profiles of known miRNAs vary greatly at different stages and could be divided into 4 categories. Novel miRNAs mostly belong to part I. Gene ontology (GO) analysis of known miRNA-targeting genes showed that they are involved in the catalytic activity pathway, binding function, and other biological processes. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis of novel miRNA-targeting genes showed that they are involved in the lysine degradation pathway. The expression of candidate miRNAs was validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and miRNAs were downregulated in PcDCL1 or PcAGO1 mutants. To further explore the function of the detected miRNAs, the precursor of a novel miRNA, miR91, was knockout by CRISPR-Cas9, the mutants displayed decreased mycelial growth, sporangia production, and zoospore production. It was found that 503142 (Inositol polyphosphate 5-phosphatase and related proteins) can be predicted as a target of miR91, and the interaction between miR91 and 503142 was verified using the tobacco transient expression system. Overall, our results indicate that the diverse and differentially expressed sRNAs are involved in the development and pathogenesis of P. capsici.

13.
Front Oncol ; 14: 1378095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939337

RESUMEN

Background: Clear cell renal cell carcinoma (ccRCC) is a metabolic disorder characterized by abnormal lipid accumulation in the cytoplasm. Lipid metabolism-related genes may have important clinical significance for prognosis prediction and individualized treatment. Methods: We collected bulk and single-cell transcriptomic data of ccRCC and normal samples to identify key lipid metabolism-related prognostic signatures. qPCR was used to confirm the expression of signatures in cancer cell lines. Based on the identified signatures, we developed a lipid metabolism risk score (LMRS) as a risk index. We explored the potential application value of prognostic signatures and LMRS in precise treatment from multiple perspectives. Results: Through comprehensive analysis, we identified five lipid metabolism-related prognostic signatures (ACADM, ACAT1, ECHS1, HPGD, DGKZ). We developed a risk index LMRS, which was significantly associated with poor prognosis in patients. There was a significant correlation between LMRS and the infiltration levels of multiple immune cells. Patients with high LMRS may be more likely to respond to immunotherapy. The different LMRS groups were suitable for different anticancer drug treatment regimens. Conclusion: Prognostic signatures and LMRS we developed may be applied to the risk assessment of ccRCC patients, which may have potential guiding significance in the diagnosis and precise treatment of ccRCC patients.

15.
Infect Immun ; 92(6): e0002624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38767360

RESUMEN

Schistosomiasis is a serious public health problem, and previous studies found that liver function and hepatic cells are damaged. To evaluate the serum parameters of liver function and fibrosis in schistosomiasis patients infected with Schistosoma japonicum (Schistosoma J.) and analyze the correlations between liver function and serum fibrosis markers in patients infected with Schistosoma J., this retrospective study enrolled 133 patients. The study population was divided into four groups: healthy people control group (n = 20), chronic schistosomiasis without liver cirrhosis (CS) group (n = 21), schistosomiasis cirrhosis without hypoalbuminemia (SC-HA) group (n = 68), and schistosomiasis cirrhosis with hypoalbuminemia (SC +HA) group (n = 24). Clinical and laboratory data were collected for analysis. In the multiple comparison of abnormal rates of aspartate aminotransferase (AST) and total bilirubin (TBIL), the abnormal rate of the SC +HA group was significantly higher than that of the other three groups (P < 0.05), and the abnormal rate of γ-GT in the SC +HA group was significantly higher than that in the control group (P < 0.05). Multiple comparison results of serum levels of fibrosis markers showed that the SC group had a significantly higher level of indexes than other groups (P < 0.05). The levels of TGF-ß1 in the CS group, SC-HA group and SC +HA group were significantly higher than those in the control group (P < 0.001). Our study demonstrated that the liver function and hepatic cells were damaged with the progression of liver disease in patients infected with Schistosoma J., and they played an important role in the occurrence and development of liver fibrosis.


Asunto(s)
Hepatocitos , Cirrosis Hepática , Schistosoma japonicum , Esquistosomiasis Japónica , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/parasitología , Esquistosomiasis Japónica/complicaciones , Esquistosomiasis Japónica/patología , Masculino , Femenino , Persona de Mediana Edad , Animales , Adulto , Estudios Retrospectivos , Hepatocitos/patología , Hepatocitos/parasitología , Biomarcadores/sangre , Anciano , Hígado/patología , Hígado/parasitología , Pruebas de Función Hepática
16.
PLoS Pathog ; 20(4): e1012138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640110

RESUMEN

Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.


Asunto(s)
MicroARNs , Phytophthora , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Fosforilación , MicroARNs/metabolismo , MicroARNs/genética , Phytophthora/patogenicidad , Phytophthora/genética , Phytophthora/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética
17.
J Environ Manage ; 358: 120882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663080

RESUMEN

This study offers an insightful and detailed examination of microplastic pollution in the Huixian karst wetland's groundwater, providing novel insights into the complex interplay of microplastic characteristics and their seasonal dynamics. We meticulously quantified microplastic concentrations, observing significant seasonal variation with values ranging from 4.9 to 13.4 n·L-1 in the wet season and 0.53-49.4 n·L-1 in the dry season. Our analysis pinpoints human activities and atmospheric deposition as key contributors to this contamination. A critical finding of our research is the pronounced disparity in microplastic levels between open wells and covered artesian wells, highlighting the vulnerability of open wells to higher pollution levels. Through correlation analysis, we unearthed the crucial influence of the karst region's unique hydrogeological characteristics on microplastic migration, distinctively different from non-karst areas. The karst terrain, characterized by its caves and subterranean rivers, facilitates the downward movement of microplastics from surface to groundwater, exacerbating pollution levels. Our investigation identifies agricultural runoff and domestic wastewater as primary pollution sources. These findings not only underscore the urgent need for environmental stewardship in karst regions but also provide a crucial foundation for formulating effective strategies to mitigate microplastic pollution in karst groundwater. The implications of this study extend beyond the Huixian karst wetland, offering a template for addressing microplastic pollution in similar ecosystems globally.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Microplásticos , Estaciones del Año , Contaminantes Químicos del Agua , Humedales , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Ecosistema
18.
Medicine (Baltimore) ; 103(17): e37980, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669362

RESUMEN

The aim of this observational study was to investigate the effects of catechol-O-methyltransferase (COMT) and ATP-binding cassette transporter B1 (ABCB1) gene polymorphisms on the postoperative analgesic effect of sufentanil in Chinese Han pediatric patients with fractures. A total of 185 pediatric patients who underwent fracture surgery were included. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the polymorphisms of COMT and ABCB1 genes. Sufentanil was used for postoperative analgesia. The pain level of the patients was evaluated using the face, legs, activity, cry, and consolability scale before surgery, during awakening, at 2, 6, 12, and 24 hours after surgery. The postoperative Ramsay sedation score, sufentanil consumption, and incidence of adverse reactions were also recorded. Pediatric patients with different genotypes of ABCB1 and COMT showed no statistically significant differences in general data such as age, gender, weight, height, surgical duration, and American Society of Anesthesiologists classification (P > .05). There were no statistically significant differences in sedation scores after surgery between different genotypes of ABCB1 and COMT (P > .05). Among patients with CC genotype in ABCB1, the pain scores and total consumption of sufentanil at awakening, 2 and 6 hours after surgery were higher compared to TT and CT genotypes (P < .05), while there were no statistically significant differences between TT and CT genotypes (P > .05). Among patients with AA genotype in COMT, the pain scores and total consumption of sufentanil at awakening, 2, 6, 12, and 24 hours after surgery were higher compared to AG and GG genotypes (P < .05), while there were no statistically significant differences between AG and GG genotypes (P > .05). There were no statistically significant differences in adverse reactions between different genotypes of ABCB1 and COMT (P > .05). The polymorphisms of COMT gene rs4680 and ABCB1 gene rs1045642 are associated with the analgesic effect and consumption of sufentanil in pediatric patients after fracture surgery.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Analgésicos Opioides , Catecol O-Metiltransferasa , Fracturas Óseas , Dolor Postoperatorio , Sufentanilo , Humanos , Sufentanilo/uso terapéutico , Sufentanilo/administración & dosificación , Catecol O-Metiltransferasa/genética , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/genética , Masculino , Femenino , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Niño , Fracturas Óseas/cirugía , Fracturas Óseas/genética , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Genotipo , Preescolar , Dimensión del Dolor , Polimorfismo Genético , Adolescente , Polimorfismo de Nucleótido Simple
19.
J Hazard Mater ; 471: 134344, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678706

RESUMEN

More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 µM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.


Asunto(s)
Carbonato de Calcio , Hierro , Minería , Sulfuros , Carbonato de Calcio/química , Hierro/química , Sulfuros/química , Secuencias Repetitivas Esparcidas , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología
20.
Can Respir J ; 2024: 5554886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584671

RESUMEN

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Asunto(s)
Ferroptosis , Panax notoginseng , Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/tratamiento farmacológico , Ciclooxigenasa 2 , Colágeno , Receptores ErbB
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA