Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299134

RESUMEN

Pepper, as a vegetable crop with a wide cultivation area worldwide, besides being a significant condiment and food, also has a momentous use for chemistry, medicine, and other industries. Pepper fruits are rich in various pigments, such as chlorophyll, carotenoids, anthocyanins, and capsanthin, which have important healthcare and economic value. Since various pigments are continuously metabolized during the development of pepper fruits, peppers exhibit an abundant fruit-colored phenotype in both the mature and immature periods. In recent years, great progress has been made in the study of pepper fruit color development, but the developmental mechanisms are still unclear systematically dissected in terms of pigment, biosynthesis, and regulatory genes. The article outlines the biosynthetic pathways of three important pigments: chlorophyll, anthocyanin, and carotenoid in pepper and the various enzymes involved in these pathways. The genetics and molecular regulation mechanisms of different fruit colors in immature and mature peppers were also systematically described. The objective of this review is to provide insights into the molecular mechanisms of pigments biosynthesis in pepper. This information will provide theoretical basis for the breeding of high-quality colored pepper varieties in the future.

2.
Front Plant Sci ; 14: 1189020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251751

RESUMEN

Pepper is widely grown all over the world, so it faces many abiotic stresses, such as drought, high temperature, low temperature, salt damage, and so on. Stresses causing the accumulation of reactive oxidative species (ROS) in plants are removed by antioxidant defense systems, and ascorbate peroxidase (APX) is an important antioxidant enzyme. Therefore, the present study performed genome-wide identification of the APX gene family in pepper. We identified nine members of the APX gene family in the pepper genome according to the APX proteins' conserved domain in Arabidopsis thaliana. The physicochemical property analysis showed that CaAPX3 had the longest protein sequence and the largest molecular weight of all genes, while CaAPX9 had the shortest protein sequence and the smallest MW. The gene structure analysis showed that CaAPXs were composed of seven to 10 introns. The CaAPX genes were divided into four groups. The APX genes of groups I and IV were localized in the peroxisomes and chloroplasts, respectively; the group II genes were localized in the chloroplasts and mitochondria; and the group III genes were located in the cytoplasm and extracell. The conservative motif analysis showed that all APX genes in the pepper had motif 2, motif 3, and motif 5. The APX gene family members were distributed on five chromosomes (Chr. 2, 4, 6, 8, and 9). The cis-acting element analysis showed that most CaAPX genes contain a variety of cis-elements related to plant hormones and abiotic stress. RNA-seq expression analysis showed that the expression patterns of nine APXs were different in vegetative and reproductive organs at different growth and development stages. In addition, the qRT-PCR analysis of the CaAPX genes revealed significant differential expression in response to high temperature, low temperature, and salinity stresses in leaf tissue. In conclusion, our study identified the APX gene family members in the pepper and predicted the functions of this gene family, which would provide resources for further functional characterization of CaAPX genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA