Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurosci Bull ; 39(1): 41-56, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35750984

RESUMEN

Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.


Asunto(s)
Trastornos del Sueño-Vigilia , Estrés Psicológico , Animales , Ratones , Hormona Liberadora de Corticotropina/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sueño , Estrés Psicológico/complicaciones
2.
Front Neurosci ; 16: 830474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360167

RESUMEN

Background: Hypersomnia is a common and highly impairing symptom marked by pathological excessive sleepiness, which induces suboptimal functioning and poor quality of life. Hypersomnia can be both a primary (e.g., hypersomnolence disorder) and secondary (e.g., tumors, and head trauma) symptom of disorders. However, its underlying mechanisms remain largely unknown. Case Presentation: We report that three clinical cases with lesions around the paraventricular nucleus of the hypothalamus (PVH) area showed excessive daytime sleepiness and a prolonged nocturnal sleep lasting more than 20 h per day. Sleep architecture and subjective daytime sleepiness were examined by polysomnography. These cases were presented with stroke, myelin oligodendrocyte glycoprotein (MOG) antibody associated disorders and neuromyelitis optical spectrum disorder (NMOSD), respectively. Magnetic resonance imaging (MRI) showed lesions around the PVH area in all these three patients. After treatment of their primary disorders, their excessive sleep decreased as the PVH area recovered. Conclusion: Our findings suggest that the PVH may play an essential role in the occurrence of hypersomnia.

3.
J Sleep Res ; 31(2): e13484, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34510626

RESUMEN

Insomnia is one of the most prevalent sleep disorders, which imparts tremendous societal and economic impact. However, the present pharmacotherapy is greatly limited by adverse effects, so it is necessary to explore new drugs for the treatment of insomnia. Radix Bupleuri (RB) has been widely used in traditional Chinese medicine for >2000 years; it has many pharmacological effects, including sedation and anticonvulsant properties. The present study investigated the effects of saikosaponin a (SSa), an active component of RB, on sleep and locomotion. Male C57BL/6j mice received intraperitoneal injections of SSa at three different dosages (0.625, 1.25, and 2.5 mg/kg). Sleep parameters were analysed by electroencephalography and electromyography. The open-field test was used to measure locomotor activities. Our present results showed that SSa treatment significantly increased the duration of non-rapid eye movement sleep and shortened sleep latency in a dose-dependent manner. A high dose of SSa (2.5 mg/kg) also decreased locomotor activities. Moreover, by measuring c-Fos expression and the calcium signal in the lateral hypothalamus (LH), we found that SSa treatment decreased neuronal activity in the LH. In conclusion, SSa might be the sleep-promoting component in RB and its mechanism may be related to the modulation of neuronal activity in the LH.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Electroencefalografía , Humanos , Área Hipotalámica Lateral , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oleanólico/análogos & derivados , Saponinas , Sueño/fisiología
4.
Elife ; 102021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34787078

RESUMEN

Hypersomnolence disorder (HD) is characterized by excessive sleep, which is a common sequela following stroke, infection, or tumorigenesis. HD is traditionally thought to be associated with lesions of wake-promoting nuclei. However, lesions of a single wake-promoting nucleus, or even two simultaneously, did not exert serious HD. Therefore, the specific nucleus and neural circuitry for HD remain unknown. Here, we observed that the paraventricular nucleus of the hypothalamus (PVH) exhibited higher c-fos expression during the active period (23:00) than during the inactive period (11:00) in mice. Therefore, we speculated that the PVH, in which most neurons are glutamatergic, may represent one of the key arousal-controlling centers. By using vesicular glutamate transporter 2 (vglut2Cre) mice together with fiber photometry, multichannel electrophysiological recordings, and genetic approaches, we found that PVHvglut2 neurons were most active during wakefulness. Chemogenetic activation of PVHvglut2 neurons induced wakefulness for 9 hr, and photostimulation of PVHvglut2→parabrachial complex/ventral lateral septum circuits immediately drove transitions from sleep to wakefulness. Moreover, lesioning or chemogenetic inhibition of PVHvglut2 neurons dramatically decreased wakefulness. These results indicate that the PVH is critical for arousal promotion and maintenance.


Asunto(s)
Nivel de Alerta/fisiología , Trastornos de Somnolencia Excesiva/fisiopatología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiopatología , Animales , Masculino , Ratones , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vigilia
5.
Curr Biol ; 29(4): 637-644.e3, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30713103

RESUMEN

Sleep is regulated by homeostatic process and circadian clock. Light indirectly modulates sleep by entraining the circadian clock to the solar day. Light can also influence sleep independent of photo-entrainment [1]. An acute light exposure could induce sleep, and an acute dark pulse could increase wakefulness in nocturnal animals [1, 2]. The photoreceptors and cell types in the retina that mediate light and dark effects on sleep are well characterized [1-4]. A few studies have explored the brain region involved in acute light induction of sleep. Fos expression and nonspecific lesions suggest that the superior colliculus (SC) may play a role in acute light induction of sleep [2, 5]. In contrast, the brain area and neural circuits mediating acute dark induction of wakefulness are unknown. Here, we demonstrated that retina ganglion cells (RGCs) had direct innervations on the GABAergic neurons in the mouse SC, and the activities of these cells were inhibited by an acute dark pulse, but not influenced by a light pulse. Moreover, ablating SC GABAergic neurons abolished the acute dark induction of wakefulness, but not light induction of sleep. Based on optogenetic and electrophysiological experiments, we found that SC GABAergic neurons formed monosynaptic functional connections with dopaminergic neurons in the ventral tegmental area (VTA). Selective lesions of VTA dopaminergic cells totally abolished acute dark induction of wakefulness without affecting the light induction of sleep. Collectively, our findings uncover a fundamental role for a retinal-SC GABAergic-VTA dopaminergic circuit in acute dark induction of wakefulness and indicate that the dark and light signals affect sleep-wake behaviors through distinct pathways.


Asunto(s)
Neuronas GABAérgicas/fisiología , Células Ganglionares de la Retina/fisiología , Sueño/fisiología , Colículos Superiores/fisiología , Vigilia/fisiología , Animales , Oscuridad , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA