Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Neurogastroenterol Motil ; 30(3): 322-331, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38972867

RESUMEN

Background/Aims: Previous studies have shown that diet and physical activity can influence constipation. However, the combined effect of diet and physical activity on constipation remains unclear. Methods: Constipation was defined based on stool consistency and frequency, while overall diet quality was assessed using Healthy Eating Index (HEI)-2015 scores. Participants were categorized into low (metabolic equivalent [MET]-min/wk < 500) and high physical activity groups (MET-min/wk ≥ 500). The association between diet and constipation across physical activity groups was analyzed using survey logistic regression and restricted cubic splines. Results: Higher HEI-2015 scores were associated with reduced constipation risk in the high physical activity group when constipation was defined by stool consistency (odds ratio [OR], 0.98; 95% confidence interval [CI], 0.97-0.99). However, in the low physical activity group, increased HEI-2015 scores did not significantly affect constipation risk (OR, 1.01; 95% CI, 0.97-1.05). Similar results were found when constipation was defined based on stool frequency. In the high physical activity group, increased HEI-2015 scores were significantly associated with a reduced constipation risk (OR, 0.96; 95% CI, 0.94-0.98). Conversely, in the low physical activity group, increased HEI-2015 scores did not affect the risk of constipation (OR, 0.96; 95% CI, 0.90-1.03). Conclusions: Our findings suggest that a higher HEI-2015 score is negatively associated with constipation among individuals with high physical activity levels but not among those with low physical activity levels. This association was consistent when different definitions of constipation were used. These results highlight the importance of combining healthy diet with regular physical activity to alleviate constipation.

2.
Transl Stroke Res ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940873

RESUMEN

The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.

3.
Hepatol Commun ; 8(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466884

RESUMEN

BACKGROUND: Hepatic fibrosis is a progressive disease, which is reversible in the early stages. The current monitoring methods have notable limitations that pose a challenge to early detection. In this study, we evaluated the utility of [18F]AlF-ND-bisFAPI positron emission tomography imaging of fibroblast activation protein (FAP) to monitor the progression of liver fibrosis. METHODS: Two mouse models of liver fibrosis were established by bile duct ligation and carbon tetrachloride administration, respectively. Positron emission tomography imaging was performed with the FAP-specific radiotracer [18F]AlF-ND-bisFAPI for the evaluation of rat HSCs and mouse models of fibrosis and combined with histopathology, immunohistochemical staining, and immunoblotting to elucidate the relationships among radioactivity uptake, FAP levels, and liver fibrosis progression. Furthermore, [18F]AlF-ND-bisFAPI autoradiography was performed to assess tracer binding in liver sections from patients with varying degrees of liver fibrosis. RESULTS: Cell experiments demonstrated that [18F]AlF-ND-bisFAPI uptake was specific in activated HSCs. Compared with control mice, [18F]AlF-ND-bisFAPI uptake in livers increased in the early stages of fibrosis and increased significantly further with disease progression. Immunohistochemistry and western blot analyses demonstrated that FAP expression increased with fibrosis severity. In accordance with the findings in animal models, ex vivo autoradiography on human fibrotic liver sections showed that radioactivity increased as fibrosis progressed from mild to severe. CONCLUSIONS: [18F]AlF-ND-bisFAPI positron emission tomography imaging is a promising noninvasive method for monitoring the progression of liver fibrosis.


Asunto(s)
Cirrosis Hepática , Tomografía de Emisión de Positrones , Humanos , Ratas , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Biomarcadores , Fibroblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA