Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215174

RESUMEN

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Transactivadores/genética , Herpesvirus Humano 8/genética , Replicación Viral , Regulación Viral de la Expresión Génica , Activación Viral , Proteasas Ubiquitina-Específicas/metabolismo
2.
Nat Cell Biol ; 25(8): 1208-1222, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443289

RESUMEN

Evasion of antitumour immunity is a hallmark of cancer. STING, a putative innate immune signalling adaptor, has a pivotal role in mounting antitumour immunity by coordinating innate sensing and adaptive immune surveillance in myeloid cells. STING is markedly silenced in various human malignancies and acts as a cell-intrinsic tumour suppressor. How STING exerts intrinsic antitumour activity remains unclear. Here, we report that STING restricts aerobic glycolysis independent of its innate immune function. Mechanistically, STING targets hexokinase II (HK2) to block its hexokinase activity. As such, STING inhibits HK2 to restrict tumour aerobic glycolysis and promote antitumour immunity in vivo. In human colorectal carcinoma samples, lactate, which can be used as a surrogate for aerobic glycolysis, is negatively correlated with STING expression level and antitumour immunity. Taken together, this study reveals that STING functions as a cell-intrinsic metabolic checkpoint that restricts aerobic glycolysis to promote antitumour immunity. These findings have important implications for the development of STING-based therapeutic modalities to improve antitumour immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Hexoquinasa , Humanos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Fosforilación , Transducción de Señal , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Glucólisis
3.
Mol Ther Oncolytics ; 29: 61-76, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37223114

RESUMEN

Oncolytic viruses (OVs) encoding various transgenes are being evaluated for cancer immunotherapy. Diverse factors such as cytokines, immune checkpoint inhibitors, tumor-associated antigens, and T cell engagers have been exploited as transgenes. These modifications are primarily aimed to reverse the immunosuppressive tumor microenvironment. By contrast, antiviral restriction factors that inhibit the replication of OVs and result in suboptimal oncolytic activity have received far less attention. Here, we report that guanylate-binding protein 1 (GBP1) is potently induced during HSV-1 infection and restricts HSV-1 replication. Mechanistically, GBP1 remodels cytoskeletal organization to impede nuclear entry of HSV-1 genome. Previous studies have established that IpaH9.8, a bacterial E3 ubiquitin ligase, targets GBPs for proteasomal degradation. We therefore engineered an oncolytic HSV-1 to express IpaH9.8 and found that the modified OV effectively antagonized GBP1, replicated to a higher titer in vitro and showed superior antitumor activity in vivo. Our study features a strategy for improving the replication of OVs via targeting a restriction factor and achieving promising therapeutic efficacy.

4.
mBio ; 14(2): e0054923, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37010434

RESUMEN

Intrinsic immunity is the frontline of host defense against invading pathogens. To combat viral infection, mammalian hosts deploy cell-intrinsic effectors to block viral replication prior to the onset of innate and adaptive immunity. In this study, SMCHD1 is identified as a pivotal cellular factor that restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation through a genome-wide CRISPR-Cas9 knockout screen. Genome-wide chromatin profiling revealed that SMCHD1 associates with the KSHV genome, most prominently the origin of lytic DNA replication (ORI-Lyt). SMCHD1 mutants defective in DNA binding could not bind ORI-Lyt and failed to restrict KSHV lytic replication. Moreover, SMCHD1 functioned as a pan-herpesvirus restriction factor that potently suppressed a wide range of herpesviruses, including alpha, beta, and gamma subfamilies. SMCHD1 deficiency facilitated the replication of a murine herpesvirus in vivo. These findings uncovered SMCHD1 as a restriction factor against herpesviruses, and this could be harnessed for the development of antiviral therapies to limit viral infection. IMPORTANCE Intrinsic immunity represents the frontline of host defense against invading pathogens. However, our understanding of cell-intrinsic antiviral effectors remains limited. In this study, we identified SMCHD1 as a cell-intrinsic restriction factor that controlled KSHV lytic reactivation. Moreover, SMCHD1 restricted the replication of a wide range of herpesviruses by targeting the origins of viral DNA replication (ORIs), and SMCHD1 deficiency facilitated the replication of a murine herpesvirus in vivo. This study helps us to better understand intrinsic antiviral immunity, which may be harnessed to develop new therapeutics for the treatment of herpesvirus infection and the related diseases.


Asunto(s)
Herpesvirus Humano 8 , Replicación Viral , Ratones , Animales , Replicación Viral/genética , Replicación del ADN , Sistemas CRISPR-Cas , ADN Viral/genética , Herpesvirus Humano 8/fisiología , Regulación Viral de la Expresión Génica , Mamíferos/metabolismo , Proteínas Cromosómicas no Histona/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA